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Learning Objectives

• Understand linear decorrelation transforms that are extensions of principal component
analysis (PCA), including data sphereing and min/max autocorrelation factors (MAF).

• Review essential sphereing and MAF theory, highlighting the reasons that they may out‐
perform PCA within the context of geostatistical modeling.

• Interpret sphereing and MAF results to consolidate understanding of the techniques.

1 Introduction

This lesson describes linear decorrelation transforms that are direct extensions of principal compo‐
nent analysis (PCA). The transforms are presented in the context of modeling multiple geological
variables with a decorrelation workflow:

1. A transform is used to decorrelate the variables
2. Transformed variables are modeled under the assumption of independence
3. The back‐transform restores the original correlation to the modeled variables

Most linear decorrelation transforms also facilitate dimension reduction, where a subset of the
variables are modeled, before the back‐transforms provide models of all variables. The transforms
that will be introduced in this lesson, data sphereing and min/max autocorrelation factors (MAF),
may outperform PCA within this framework.

This lesson begins with a brief review of PCA, although readers are encouraged to review the
Principal Component Analysis lesson if unfamiliar with the technique and related concepts such
as spectral decomposition and transform loadings. Sphereing and MAF are then introduced and
demonstrated, before summarizing their key features.

2 Principal Component Analysis

Consider k variables Y1, . . . , Yk that have been standardized to have a mean of zero (required for
linear rotations) and variance of one (recommended for linear rotations). Conditioning data is given
as the matrixY : yα,i, α = 1, . . . , n, i = 1, . . . , k, where n is the number of samples. The primary
input to PCA is the covariance matrix:

Σ : Ci,j =
1

n

n∑
α=1

yα,i · yα,j , for i, j = 1, . . . , k

Diagonal entriesCi,i are the variance of each Yi. Off‐diagonal entries Ci,j , i ̸= j are the covari‐
ance betweenYi andYj . These covariances are also correlations since eachYi has a variance of one.
The first step of PCA performs spectral decomposition of ΣY , yielding the orthogonal eigenvector
matrixVY : vi,j , i, j = 1, . . . , k and the diagonal eigenvalue matrixDY : di,i, i = 1, . . . , k:

ΣY = VY DY V
T
Y
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Figure 1: Scatter plot of the original data with the orientation (eigenvector) and magnitude (eigen‐
value) of the principal components overlain.

This is demonstrated using a small k = 3 example, where a scatter plot of the originalY1, . . . , Y3

data is overlain with vectors, whose orientation and length represent each eigenvector column and
diagonal eigenvalue entry respectively.

The PCA transform is then performed through the matrix multiplication ofY andVY :

P = YVY

This rotates the multivariate data so that the resultant principal components in P are uncorre‐
lated, where off‐diagonal entries of its correlation matrixΣP are zero. Direct entries ofΣP are the
variance of the principal components, which correspond with the eigenvalues in DY . The below
scatterplot displays the transformed data P1, . . . , P3, where Y1, . . . , Y3 from the previous scatter‐
plot are rotated to be uncorrelated.

3 Data Sphereing

Data sphereing is a class of rotations that are close extensions of PCA, yielding variables that in addi‐
tion to being uncorrelated, also have a variance of one. The combination of these properties yields
an identity covariance matrix. Also known as data whitening, two available forms of sphereing are
referred to here as dimension reduction sphereing (DRS) (Friedman, 1987) and spectral decomposi‐
tion sphereing (SDS) (Fukunaga, 1972; Hwang, Lay, & Lippman, 1994).
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Figure 2: Scatter plot of the PCA data.

Figure 3: Covariance matrix of the original data (left) and PCA data (right).
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Figure 4: Scatter plot of the DRS data.

DRS Transform
DRS is the simpler of the two sphereing transforms and is given as:

W = YS−1/2, where S−1/2 = VY D
−1/2
Y

The multiplication ofVY rotates the variables to an orthogonal axis (PCA), beforeD−1/2
Y trans‐

forms them to have a variance of one. A more intuitive formulation of this transform may be
W = PD

−1/2
Y , where each principal component Pi is divided by its standard deviation d

1/2
i,i . The

S−1/2 term is commonly referred to as the sphereing matrix since it provides the transform. Multi‐
plyingW by the inverse of the sphereing matrix provides the back‐transform.

The difference between PCA and DRS is visually apparent in their respective scatterplots, where
the differing variability ofP1, . . . , P3 above ismade uniform inW1, . . . ,W3 below. This is confirmed
by comparing diagonal entries of the covariance matricesΣP andΣW below, where the latter has
the expected identity values. Using the Y3 scatter coloring for reference, note that the rotation is
preserved between PCA and DRS.

Although diagonal entries of ΣW do not correspond with the eigenvalues in DY (as is the
case with ΣP ), the variability that each Wi explains about Y1, . . . , Yk corresponds with the prin‐
cipal components P1, . . . , Pk, since the loading ρ′ is identical for PCA and DRS. More formally,
ρ′(Yi, Pj) = ρ(Yi, Pj) · σi = ρ′(Yi,Wj) for i, j = 1, . . . , k, where σi is the standard deviation
of Yi (one since standardized), and ρ(Yi, Pj) is the correlation between Yi and Pj . DRS may there‐
fore be useful if the properties of the PCA transform are required, while simultaneously benefiting
from standardized variance in terms of interpretability and modeling convenience.
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Figure 5: Covariance matrices of the PCA (left) and DRS (right) data.

SDS Transform
Maximizing themultivariate variability that each descending PCA and DRS variable explains is useful
for dimension reduction, but promotes mixing of the original variables in transformed space. More
specifically, attempting to load Yi, i = 1, . . . , k onto the first few Pi or Wi variables effectively in‐
creases their mixing in transformed space. This decreases the likelihood that the distinct character‐
istics of each variable Yi are recovered following geostatistical simulation and back‐transformation,
motivating the SDS transform:

X = YS−1/2, where S−1/2 = VY D
−1/2
Y VT

Y

The difference between the two sphereing methods is the additional multiplication by VT ,
which projects the orthogonal variables back onto the basis of the original variables. This aligns
it with the form of the underlying spectral decomposition equation ΣY = VY DY V

T
Y , explaining

the derivation of its name. The rotation is performed in amanner thatmaximizes the absolute value
of the loading ρ′(Yi, Xj) for i = j, whileminimizing the absolute value of ρ′(Yi, Xj) for i ̸= j. Thus,
variables are made uncorrelated with minimal rotation, or minimal mixing in transformed space.

Consider that the Y3 coloring aligns more closely with the P1 and W1 axes for the PCA and
DRS scatter above. This is expected since the first principal component explains the majority of
variability, including Y3 variability. This is corroborated by the DRS loading matrix (below), where
the largest loading of Y3 occurs on W1. Conversely, Y3 coloring closely aligns with the X3 axis in
the SDS scatter below, while the SDS loading matrix shows that Y3 is loaded almost entirely onX3.

Variograms of the original and transformed variables confirm the expected behavior of the dif‐
fering loadings, where the SDS variograms closely alignwith the original variograms. Conversely, the
spatial structure of the original variables are heavily mixed in the DRS variables, yielding variograms
that differ from the original variables. Simulated realizations of the SDS variables would therefore
be expected to reliably reproduce the original variograms following back‐transform. Simulated real‐
izations of the DRS variables may reproduce the original variograms following back‐transformation,
though practice has shown that this is less reliable than the SDS approach.
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Figure 6: Scatter plot of the SDS data.

Figure 7: Loadings of the original variables on the DRS (left) and SDS (right) data.
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Figure 8: Variograms of the original and transformed variables.

4 Min/Max Autocorrelation Factors

MAF was introduced by (Switzer & Green, 1984) in the field of spatial remote sensing and popular‐
ized in geostatistics by (Desbarats & Dimitrakopoulos, 2000). Before motivating the technique, let
the SDS transformed data be X : xi(uα), α = 1, . . . , n, i = 1, . . . , k, where uα is a coordinate
vector. Spatial locations are separated by a lag vector h, which has a distance of h. Spatial structure
of the SDS variables is calculated using with the variogram matrix:

ΓX : γi,j(h) =
1

2n(h)

n(h)∑
α=1

(
xi(uα)− xi(uα + h)

)(
xj(uα)− xj(uα + h)

)
for i, j = 1, . . . , k

where there are n(h) samples separated by h. Note that ΓX is more strictly referred to as
the semivariogram, though it is common practice in geostatistics to refer to it as the variogram. A
diagonal value γi,i(h) is the variogram ofXi, which relates to its autocorrelationCi,i(h) according
to γi,i(h) = 1 − Ci,i(h). An off‐diagonal value γi,j(h), i ̸= j is the cross‐variogram between Xi

and Xj , which relates to their cross‐correlation Ci,j(h) according to γi,j(h) = −Ci,j(h). This is
based on applying the general relation γi,j(h) = Ci,j(0) − Ci,j(h), where the Ci,j(0) values are
drawn from the identity covariance matrixΣX in this case.

MAF Motivation
An implicit assumption of geostatistical modeling frameworks that utilize PCA or sphereing, is that
in decorrelating the variables at zero lag, Ci,j(0) = 0, the variables are decorrelated at all lags,
Ci,j(h) = 0 for all h. Consider cross‐variograms for the presented example below, which are sig‐
nificantly reduced by sphereing, but not made zero.

Independent simulation in the presence of significant cross‐variogram values will lead to issues
with the reproduction of the original variogram and cross‐variograms, as well as other properties.
This motivates MAF, which transforms variables to be uncorrelated at h = 0 and one h > 0 lag. If
the spatial correlation can be described by a two‐structure linear model of coregionalization (LMC)
(Journel & Huijbregts, 1978), then the MAF transformed variables will be made uncorrelated for all
h. This in turn, should lead to improved cross‐correlation reproduction in simulated realizations.
Even where the variables are not fully described by a two structure LMC, MAF has still been found
to yield better cross‐correlation reproduction than PCA (Barnett & Deutsch, 2012).
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Figure 9: Cross‐variograms of the original and transformed variables.

MAF Transform
The MAF workflow is summarized with four steps:

1. Perform spectral decomposition of theY covariance matrixΣY = VY DY V
T
Y

2. Perform the DRS or SDS transform (SDS used here),X = ZVY D
−1/2
Y VT

Y

3. Perform spectral decomposition of theX variogram matrix ΓX = VXDXVT
X

4. Perform the MAF transform,M = XVX

This two‐step spectral decomposition and rotation yields multivariate data so that the resultant
autocorrelation factors inM are uncorrelated at h = 0 and the r lag that was used for the calcula‐
tion of ΓX . The r lag should have a distance r that is greater than zero. The MAF back‐transform is
given asY = MA−1, whereA = VY D

−1/2
Y VT

Y VX .
Scatterplots of the MAF data are displayed below, where the rotation is apparent based on Y3

coloring relative to the SDS scatterplot. The more obvious characteristic of the MAF transform,
however, is seen when comparing its cross‐variogram to that of the SDS and original data. The
cross‐correlation for MAF is generally less than that of SDS at short scale lags, and is made zero at
the r = 20m distance that is used for the calculation of ΓX .

Selection of the r lag is not straight forward. Iterative execution of MAF with varying r is one
option, before selecting the lag that provides the least cross‐correlation overall. Consider that with
variogrammodeling, priority is often placed on the reproduction of short‐scale features. Extending
this concept, the use of a smaller rwill generally remove short scale cross‐correlation, leading in turn
to the reproduction of short scale cross‐correlation following simulation and back‐transformation.
Readers using a web browser may use the following interactive figure, which displays the cross‐
variogram of the exampleM data with varying r distances.

Dimension Reduction
As with PCA, MAF provides dimension reduction functionality that allows for less than the k vari‐
ables to be simulated, before the back‐transform provides realizations of all k original variables.
Caution should be used, however, as the variability that is described by eigenvalues in DY (PCA)
andDX (MAF) is very different.

The diagonal entries ofDY are rank ordered according to the variability that each Yi principal
component explains about the multivariate system, while also corresponding with its variance. Di‐
mension reduction therefore involves removing principal components associated with the higher
ranked, lower magnitude eigenvalues.
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Figure 10: Scatter plot of the MAF data.

Figure 11: Cross‐variograms of the original and transformed variables.
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Figure 12: Eigenvalues of each autocorrelation factor.

Figure 13: Variograms of the original and MAF transformed variables.

Although DX eigenvalues are also ranked in descending order of magnitude, they relate to
the spatial variability that each Mi factor explains. The autocorrelation Ci,i(r), variogram γi,i(r)
and eigenvalue di,i of each Mi are related according to di,i = 1 − Ci,i(r) = γi,i(r). Smaller
eigenvalues are therefore associated with more continuous factors, and vice versa. Observe the
MAF eigenvalues and variograms below, where each di,i is shown to correspond with γi,i(r) for the
applied r = 20m.

The derivation of the MAF name is therefore explained, as the factors range between the mini‐
mum and maximum autocorrelation at the chosen lag distance. Since the cross‐correlation of the
factors is zero at r, the spatial variability of the multivariate system at r is entirely explained by
the autocorrelations. Returning to dimension reduction, lower ranked factors of higher spatial vari‐
ability may be removed for modeling purposes, as in the case of a large k, they will often describe
virtually random spatial structure (e.g., pure nugget effect). This may impact the selection of the
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decorrelation lag distance, as using an r that is closer to the smallest data spacing allows for the
nugget effect to be inferred from theDX entries.

5 Summary

Data sphereing (DRS and SDS) and MAF are extensions of PCA, providing decorrelation of the vari‐
ables at h = 0, in addition to the following features:

1. DRS standardizes the decorrelated variables to have unit variance, which may provide practi‐
cal convenience to subsequentmodeling steps. The dimension reduction functionality of PCA
is preserved.

2. SDS standardizes the decorrelated variables to have unit variance, while performing a second
rotation tominimizemixing of the original variables. Thismay be useful for geostatisticalmod‐
eling, as it improves the likelihood of reproducing features that are unique to each variable.
The dimension reduction functionality of PCA is not preserved.

3. MAF is applied to either DRS or SDS transformed data, applying a second spectral decompo‐
sition to decorrelate the variables at one h > 0 lag distance. This spatial decorrelation will
generally make the modeling assumption of independence more appropriate.

Readers using a web browser may find the following interactive figure useful for understanding
the nature of each transform, through comparing scatter of the original variables and transformed
variables. Buttons on the left may be used for toggling the displayed data, while zooming and rota‐
tion functionality is available.

While these linear rotations are powerful geostatistical tools, the presence of multivariate com‐
plexitieswill often lead to problematicmodeling results. These complexities are not captured by the
covariance parameter, so that dependencewill exist following decorrelation, leading tomajor issues
with the modeling assumption of independence. This motivates multivariate Gaussian transforms,
such as the projection pursuit multivariate transform that is reviewed in the companion lesson.
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