
Sphereing and Min/Max
Autocorrelation Factors

Ryan M. Barnett

University of Alberta

Learning Objectives

• Understand linear decorrelation transforms that are extensions of principal
component analysis (PCA), including data sphereing and min/max autocorre-
lation factors (MAF).

• Review essential sphereing and MAF theory, highlighting the reasons that
they may outperform PCA within the context of geostatistical modeling.

• Interpret sphereing andMAF results to consolidate understanding of the tech-
niques.

1 Introduction

This lesson describes linear decorrelation transforms that are direct extensions of prin-
cipal component analysis (PCA). The transforms are presented in the context of model-
ing multiple geological variables with a decorrelation workflow:

1. A transform is used to decorrelate the variables
2. Transformed variables are modeled under the assumption of independence
3. The back-transform restores the original correlation to the modeled variables

Most linear decorrelation transforms also facilitate dimension reduction, where a
subset of the variables are modeled, before the back-transforms provide models of all
variables. The transforms that will be introduced in this lesson, data sphereing and
min/max autocorrelation factors (MAF), may outperform PCA within this framework.

This lesson begins with a brief review of PCA, although readers are encouraged to
review the Principal Component Analysis lesson if unfamiliar with the technique and re-
lated concepts such as spectral decomposition and transform loadings. Sphereing and
MAF are then introduced and demonstrated, before summarizing their key features.

2 Principal Component Analysis

Consider k variables Y1, . . . , Yk that have been standardized to have a mean of zero
(required for linear rotations) and variance of one (recommended for linear rotations).
Conditioning data is given as the matrixY : yα,i, α = 1, . . . , n, i = 1, . . . , k, where n is the
number of samples. The primary input to PCA is the covariance matrix:

Σ : Ci,j =
1

n

n∑
α=1

yα,i · yα,j , for i, j = 1, . . . , k

Diagonal entries Ci,i are the variance of each Yi. Off-diagonal entries Ci,j , i ̸= j are
the covariance between Yi and Yj . These covariances are also correlations since each
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Figure 1: Scatter plot of the original data with the orientation (eigenvector) and magni-
tude (eigenvalue) of the principal components overlain.

Yi has a variance of one. The first step of PCA performs spectral decomposition of ΣY ,
yielding the orthogonal eigenvector matrix VY : vi,j , i, j = 1, . . . , k and the diagonal
eigenvalue matrix DY : di,i, i = 1, . . . , k:

ΣY = VY DY V
T
Y

This is demonstrated using a small k = 3 example, where a scatter plot of the original
Y1, . . . , Y3 data is overlain with vectors, whose orientation and length represent each
eigenvector column and diagonal eigenvalue entry respectively.

The PCA transform is then performed through the matrix multiplication of Y and
VY :

P = YVY

This rotates the multivariate data so that the resultant principal components in P
are uncorrelated, where off-diagonal entries of its correlation matrix ΣP are zero. Di-
rect entries ofΣP are the variance of the principal components, which correspondwith
the eigenvalues inDY . The below scatterplot displays the transformed data P1, . . . , P3,
where Y1, . . . , Y3 from the previous scatterplot are rotated to be uncorrelated.

3 Data Sphereing

Data sphereing is a class of rotations that are close extensions of PCA, yielding variables
that in addition to being uncorrelated, also have a variance of one. The combination
of these properties yields an identity covariance matrix. Also known as data whitening,
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Figure 2: Scatter plot of the PCA data.

Figure 3: Covariance matrix of the original data (left) and PCA data (right).
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Figure 4: Scatter plot of the DRS data.

two available forms of sphereing are referred to here as dimension reduction sphereing
(DRS) (Friedman, 1987) and spectral decomposition sphereing (SDS) (Fukunaga, 1972;
Hwang, Lay, & Lippman, 1994).

DRS Transform
DRS is the simpler of the two sphereing transforms and is given as:

W = YS−1/2, where S−1/2 = VY D
−1/2
Y

The multiplication of VY rotates the variables to an orthogonal axis (PCA), before
D

−1/2
Y transforms them to have a variance of one. A more intuitive formulation of this

transform may be W = PD
−1/2
Y , where each principal component Pi is divided by its

standard deviation d
1/2
i,i . The S−1/2 term is commonly referred to as the sphereing ma-

trix since it provides the transform. Multiplying W by the inverse of the sphereing
matrix provides the back-transform.

The difference between PCA and DRS is visually apparent in their respective scatter-
plots, where the differing variability of P1, . . . , P3 above is made uniform in W1, . . . ,W3

below. This is confirmed by comparing diagonal entries of the covariance matricesΣP

and ΣW below, where the latter has the expected identity values. Using the Y3 scatter
coloring for reference, note that the rotation is preserved between PCA and DRS.

Although diagonal entries ofΣW do not correspond with the eigenvalues inDY (as
is the case with ΣP ), the variability that eachWi explains about Y1, . . . , Yk corresponds
with the principal components P1, . . . , Pk, since the loading ρ′ is identical for PCA and
DRS. More formally, ρ′(Yi, Pj) = ρ(Yi, Pj) · σi = ρ′(Yi,Wj) for i, j = 1, . . . , k, where σi is
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Figure 5: Covariance matrices of the PCA (left) and DRS (right) data.

the standard deviation of Yi (one since standardized), and ρ(Yi, Pj) is the correlation
between Yi and Pj . DRS may therefore be useful if the properties of the PCA transform
are required, while simultaneously benefiting from standardized variance in terms of
interpretability and modeling convenience.

SDS Transform
Maximizing the multivariate variability that each descending PCA and DRS variable ex-
plains is useful for dimension reduction, but promotes mixing of the original variables
in transformed space. More specifically, attempting to load Yi, i = 1, . . . , k onto the
first few Pi orWi variables effectively increases their mixing in transformed space. This
decreases the likelihood that the distinct characteristics of each variable Yi are recov-
ered following geostatistical simulation and back-transformation, motivating the SDS
transform:

X = YS−1/2, where S−1/2 = VY D
−1/2
Y VT

Y

The difference between the two sphereing methods is the additional multiplication
byVT , which projects the orthogonal variables back onto the basis of the original vari-
ables. This aligns it with the form of the underlying spectral decomposition equation
ΣY = VY DY V

T
Y , explaining the derivation of its name. The rotation is performed in a

manner that maximizes the absolute value of the loading ρ′(Yi, Xj) for i = j, while min-
imizing the absolute value of ρ′(Yi, Xj) for i ̸= j. Thus, variables aremade uncorrelated
with minimal rotation, or minimal mixing in transformed space.

Consider that the Y3 coloring alignsmore closely with theP1 andW1 axes for the PCA
andDRS scatter above. This is expected since the first principal component explains the
majority of variability, including Y3 variability. This is corroborated by the DRS loading
matrix (below), where the largest loading of Y3 occurs on W1. Conversely, Y3 coloring
closely aligns with the X3 axis in the SDS scatter below, while the SDS loading matrix
shows that Y3 is loaded almost entirely on X3.

Variogramsof the original and transformed variables confirm the expectedbehavior
of the differing loadings, where the SDS variograms closely align with the original vari-
ograms. Conversely, the spatial structure of the original variables are heavily mixed in
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Figure 6: Scatter plot of the SDS data.

Figure 7: Loadings of the original variables on the DRS (left) and SDS (right) data.
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Figure 8: Variograms of the original and transformed variables.

the DRS variables, yielding variograms that differ from the original variables. Simulated
realizations of the SDS variables would therefore be expected to reliably reproduce the
original variograms following back-transform. Simulated realizations of the DRS vari-
ables may reproduce the original variograms following back-transformation, though
practice has shown that this is less reliable than the SDS approach.

4 Min/Max Autocorrelation Factors

MAF was introduced by (Switzer & Green, 1984) in the field of spatial remote sensing
and popularized in geostatistics by (Desbarats & Dimitrakopoulos, 2000). Before mo-
tivating the technique, let the SDS transformed data be X : xi(uα), α = 1, . . . , n, i =
1, . . . , k, where uα is a coordinate vector. Spatial locations are separated by a lag vector
h, which has a distance of h. Spatial structure of the SDS variables is calculated using
with the variogram matrix:

ΓX : γi,j(h) =
1

2n(h)

n(h)∑
α=1

(
xi(uα)− xi(uα + h)

)(
xj(uα)− xj(uα + h)

)
for i, j = 1, . . . , k

where there are n(h) samples separated by h. Note that ΓX is more strictly re-
ferred to as the semivariogram, though it is common practice in geostatistics to refer
to it as the variogram. A diagonal value γi,i(h) is the variogram of Xi, which relates
to its autocorrelation Ci,i(h) according to γi,i(h) = 1 − Ci,i(h). An off-diagonal value
γi,j(h), i ̸= j is the cross-variogram between Xi and Xj , which relates to their cross-
correlationCi,j(h) according to γi,j(h) = −Ci,j(h). This is based on applying the general
relation γi,j(h) = Ci,j(0)−Ci,j(h), where the Ci,j(0) values are drawn from the identity
covariance matrix ΣX in this case.

MAF Motivation
An implicit assumptionof geostatisticalmodeling frameworks that utilize PCAor sphere-
ing, is that in decorrelating the variables at zero lag, Ci,j(0) = 0, the variables are decor-
related at all lags, Ci,j(h) = 0 for all h. Consider cross-variograms for the presented
example below, which are significantly reduced by sphereing, but not made zero.
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Figure 9: Cross-variograms of the original and transformed variables.

Independent simulation in the presence of significant cross-variogram values will
lead to issues with the reproduction of the original variogram and cross-variograms,
as well as other properties. This motivates MAF, which transforms variables to be un-
correlated at h = 0 and one h > 0 lag. If the spatial correlation can be described by a
two-structure linearmodel of coregionalization (LMC) (Journel &Huijbregts, 1978), then
the MAF transformed variables will be made uncorrelated for all h. This in turn, should
lead to improved cross-correlation reproduction in simulated realizations. Even where
the variables are not fully described by a two structure LMC, MAF has still been found
to yield better cross-correlation reproduction than PCA (Barnett & Deutsch, 2012).

MAF Transform
The MAF workflow is summarized with four steps:

1. Perform spectral decomposition of theY covariance matrix ΣY = VY DY V
T
Y

2. Perform the DRS or SDS transform (SDS used here),X = ZVY D
−1/2
Y VT

Y

3. Perform spectral decomposition of theX variogram matrix ΓX = VXDXVT
X

4. Perform the MAF transform,M = XVX

This two-step spectral decomposition and rotation yields multivariate data so that
the resultant autocorrelation factors in M are uncorrelated at h = 0 and the r lag that
was used for the calculation of ΓX . The r lag should have a distance r that is greater
than zero. TheMAFback-transform is given asY = MA−1, whereA = VY D

−1/2
Y VT

Y VX .
Scatterplots of the MAF data are displayed below, where the rotation is apparent

based on Y3 coloring relative to the SDS scatterplot. The more obvious characteristic
of the MAF transform, however, is seen when comparing its cross-variogram to that of
the SDS and original data. The cross-correlation for MAF is generally less than that of
SDS at short scale lags, and is made zero at the r = 20m distance that is used for the
calculation of ΓX .

Selection of the r lag is not straight forward. Iterative execution of MAF with varying
r is one option, before selecting the lag that provides the least cross-correlation overall.
Consider that with variogram modeling, priority is often placed on the reproduction
of short-scale features. Extending this concept, the use of a smaller r will generally
remove short scale cross-correlation, leading in turn to the reproduction of short scale
cross-correlation following simulation and back-transformation. Readers using a web
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Figure 10: Scatter plot of the MAF data.

Figure 11: Cross-variograms of the original and transformed variables.
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Figure 12: Eigenvalues of each autocorrelation factor.

browser may use the following interactive figure, which displays the cross-variogram
of the exampleM data with varying r distances.

Dimension Reduction
As with PCA, MAF provides dimension reduction functionality that allows for less than
the k variables to be simulated, before the back-transform provides realizations of all k
original variables. Caution should be used, however, as the variability that is described
by eigenvalues inDY (PCA) andDX (MAF) is very different.

The diagonal entries ofDY are rank ordered according to the variability that each Yi

principal component explains about the multivariate system, while also corresponding
with its variance. Dimension reduction therefore involves removing principal compo-
nents associated with the higher ranked, lower magnitude eigenvalues.

Although DX eigenvalues are also ranked in descending order of magnitude, they
relate to the spatial variability that eachMi factor explains. The autocorrelation Ci,i(r),
variogram γi,i(r) and eigenvalue di,i of each Mi are related according to di,i = 1 −
Ci,i(r) = γi,i(r). Smaller eigenvalues are therefore associated with more continuous
factors, and vice versa. Observe the MAF eigenvalues and variograms below, where
each di,i is shown to correspond with γi,i(r) for the applied r = 20m.

The derivation of the MAF name is therefore explained, as the factors range be-
tween the minimum and maximum autocorrelation at the chosen lag distance. Since
the cross-correlation of the factors is zero at r, the spatial variability of the multivari-
ate system at r is entirely explained by the autocorrelations. Returning to dimension
reduction, lower ranked factors of higher spatial variability may be removed for mod-
eling purposes, as in the case of a large k, they will often describe virtually random
spatial structure (e.g., pure nugget effect). This may impact the selection of the decor-
relation lag distance, as using an r that is closer to the smallest data spacing allows for
the nugget effect to be inferred from theDX entries.
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Figure 13: Variograms of the original and MAF transformed variables.

5 Summary

Data sphereing (DRS and SDS) and MAF are extensions of PCA, providing decorrelation
of the variables at h = 0, in addition to the following features:

1. DRS standardizes the decorrelated variables to have unit variance, whichmay pro-
vide practical convenience to subsequent modeling steps. The dimension reduc-
tion functionality of PCA is preserved.

2. SDS standardizes the decorrelated variables to have unit variance, while perform-
ing a second rotation to minimize mixing of the original variables. This may be
useful for geostatistical modeling, as it improves the likelihood of reproducing
features that are unique to each variable. The dimension reduction functionality
of PCA is not preserved.

3. MAF is applied to either DRS or SDS transformed data, applying a second spectral
decomposition to decorrelate the variables at one h > 0 lag distance. This spa-
tial decorrelation will generally make the modeling assumption of independence
more appropriate.

Readers using a web browser may find the following interactive figure useful for
understanding the nature of each transform, through comparing scatter of the original
variables and transformed variables. Buttons on the left may be used for toggling the
displayed data, while zooming and rotation functionality is available.

While these linear rotations are powerful geostatistical tools, the presence of multi-
variate complexitieswill often lead to problematicmodeling results. These complexities
are not captured by the covariance parameter, so that dependence will exist following
decorrelation, leading to major issues with the modeling assumption of independence.
This motivates multivariate Gaussian transforms, such as the projection pursuit multi-
variate transform that is reviewed in the companion lesson.
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