
The Multivariate Spatial Bootstrap
Jeremy Vincent1 and Clayton V. Deutsch2

1University of Alberta
2University of Alberta

Learning Objectives

• Understand the place of bootstrap resampling.
• Appreciate the need for the multivariate spatial bootstrap in the context of
geostatistical modeling.

• Consolidate understanding of the technique with application to a vein mod-
eling dataset.

1 Introduction

Accurate characterization of uncertainty in mineral resources is one of the main ob-
jectives of geostatistics. Uncertainty in resource estimates provides more complete
information to decision making.

Conditional simulation techniques are used to generate realizations that represent
variability and uncertainty. Large-scale uncertainty in the resources can be underesti-
mated if uncertainty in the global input histogram is not considered (Khan & Deutsch,
2016).

The uncertainty in the global histogramparameters is established by using the boot-
strap to resample the input histogram, followed by simulation of realizations (Deutsch,
2004). Uncertainty in domain boundary locations, the variogram, and other parame-
ters could be considered, but this Lesson focuses on the global histogram.

2 Review of the Bootstrap Methodology

To assess the uncertainty in the global histogram, a variant of the bootstrap technique
pioneered by (Efron, 1982) is employed. The bootstrap utilizes Monte Carlo simulation
to resample n data values to create different distributions of data. The distributions of
data can be summarized by their mean and variance. The recommended approach is
to use realizations of the distributions in subsequent geostatistical modeling.

The bootstrap methodology for uncertainty in the experimental mean is summa-
rized as follows: (1) performdeclustering to create a representative distribution (FZ(z)),
(2) draw n values using replacement (equal to the number of available data) using uni-
formly distributed random numbers, pi, i = 1, ...n, and record the corresponding quan-
tiles: zi = F−1

Z (pi), i = 1, ...n, (3) calculate the experimental mean of the new distribu-
tion, and (4) return to step (2) to generate many realizations of the mean for a stable
distribution. Thousands of realizations are typically generated.

The resampled distributions of n data could be retained for the calculation of other
statistics or for input to geostatistical calculations. The bootstrap assumes samples
are independent and that the underlying histogram of the data is representative of the
population. In geological applications, the data almost always show spatial correlation.
The bootstrap wasmodified to consider the spatial correlation between data by several
authors including Solow (1985), Deutsch (2004), and Journel & Bitanov (2004).
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3 Multivariate Spatial Bootstrap Methodology

The multivariate spatial bootstrap differs from the standard bootstrap by considering
the spatial correlation ofK geological variables sampled at n data locations zk(ui), i =
1, ..., n, k = 1, ...,K with a geostatistical simulation algorithm. The conditioning data
and the domain limits are not considered. A set of data with greater spatial correla-
tion have higher uncertainty because the data are more redundant (Khan & Deutsch,
2016). The spatial bootstrap realizations represent the prior parameter uncertainty in
the histogram before updating with the conditioning data and the domain limits. The
LU simulationmethod is often chosen because it is simple and efficient for a large num-
ber of realizations and for data sets not exceeding about 5,000 locations. An alternative
simulation algorithm such as sequential Gaussian simulation would be used for larger
data sets.

Conditioning of the spatial bootstrap realizations by the input data during simula-
tion and then clipping by the domain boundary yields the posterior histogram uncer-
tainty. This has been shown to correctly transfer uncertainty in the histogram. The
following describes the procedure for the multivariate case of the spatial bootstrap
(Rezvandehy, 2016):

Prior Uncertainty

1. Define a representative histogram of the n composited input data for each ran-
dom variable FZk

(zk) (see Lesson on declustering).

2. Transform the representative histogram data FZk
(zk) to Gaussian units GYk

(yk)
through the quantile transform yk,i = G−1

Yk
(FZk

(zk)).

3. Model the direct and cross variograms between all variables γYkk′ (h) in Gaussian
units. The linear model of coregionalization or a simpler intrinsic model of core-
gionalization could be considered. The k and k′ subscripts denote the RV repre-
senting the two variables in the cross variogram. For K random variables, there
are a total of K(K + 1)/2 direct and cross variograms.

4. Perform a Cholesky LU decomposition of the covariance matrix as C = LLT ,
where C, L and LT are nK-by-nK matrices. L is the lower triangular matrix and
LT is its transpose.

5. Generate M unconditional realizations by multiplying the L matrix by w, a nK-
by-1 vector of independent Gaussian deviates (generated in the same manner as
Step 2 in the Bootstrap section above):

y(m) = Lw(m), m = 1, ...,M

where y is the resulting nK-by-1 vector of unconditionally simulated Gaussian
values with the correct correlation overM realizations.

6. Backtransformeach valuewith the correct global back transformation table. There
are K backtransform tables.

7. Generate the distribution of uncertainty in the parameter of interest for each RV
(e.g., mean, variance, correlation, etc.).

Posterior Uncertainty

8. Using the spatial bootstrap realizations as reference distributions, performanormal-
score transform of the original input dataM times. Keep theM transform tables
for back transformation in Step 9 (see Lesson on the normal score transform).
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Figure 1: The multivariate spatial bootstrap workflow; Hist = histogram, Hist_ps = pos-
terior, Real = realization.

9. PerformM conditional simulations of themultivariate data using the transformed
data from Step 8 and then backtransform each realization to original units using
the transform tables from the previous step.

10. Clip the realizations to the domain limits.

The spatial bootstrap process is sketched:

4 Example

Input Data
The following example utilizes a two-dimensional, multivariate geological data set con-
taining n = 67 composited drill hole data. Compositing ensures the samples are equally
weighted. The data are bounded by a 50m domain clipping limit (Figure 2). The vari-
ables of interest are thickness (Th) and gold (Au) (K = 2). They are spatially correlated
(ρTh:Au = 0.50), with higher values generally located in the upper half of the domain.
Declustering was undertaken using a 90m x 90m grid to generate the representative
distributions.

The data are normal-score transformed for variogram modeling and spatial boot-
strap resampling. Thedirect experimental variogramsaremodeledusing a single spher-
ical structure, with ranges of 250m and 165m for Th and Au respectively (Figure 3). An
intrinsic model of coregionalization is used to scale the cross-covariance between the
two variables. A range of 250m is used for both Th and Au in this step because Th is
the primary variable of interest.

Prior Histogram Uncertainty
Unconditional LU simulation is used to simulateM = 200 realizations of the declustered
Th and Au distributions, each containing n = 67 data points. These are displayed as
the green lines in the cumulative probability plots in the upper graphs of Figure 4. The
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Figure 2: Locations and statistical distributions of Th and Au. The dashed gray and
green lines represent the naive and the declustered distributions respectively.
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Figure 3: Modeled Th and Au direct variograms.

variability of these realizations reflects the resampling of the drill holes considering only
the data locations and the covariance, not the data values or the domain limits.

Each realization is averaged to create a distribution of 200 mean values that are
plotted in the bottom of Figure 4. These histograms represent the prior uncertainty
distributions of each variable. The mean values of Th and Au compare very closely to
the mean values of the declustered distributions. The uncertainty in the histograms
is large due to the correlation of Th and Au. Recall that higher correlation between
variables means the data are more redundant and therefore increase uncertainty. A
lower ρTh:Au would have yielded a narrower prior distribution of uncertainty.

The average correlation of Th and Au from each realization is calculated. The dis-
tribution of the averages has a mean of ρTh:Au = 0.45, which demonstrates the spatial
relationship is respected during simulation.

Posterior Histogram Uncertainty
Updating of the prior histogram uncertainty to the posterior histogram uncertainty is
achieved through application of the conditioning data and the domain clipping limits
during simulation. Before simulation, each spatial bootstrap realization is used as a
reference distribution during the normal-score transform of the declustered data.

The Th variable is simulated independently using the modeled variogram param-
eters from Figure 3, then Au is simulated using the variogram model from Figure 3
with the Th realizations acting as secondary data during co-simulation (Figure 5). The
50m clipping limit is applied before backtransforming the realizations using the spatial
bootstrap reference distributions. It is through this forward and backward transforma-
tion process that the variance from the spatial bootstrap is transferred to update the
conditioning data.

The Th and Au realizations in Figure 5 represent the highest and lowest average
histogram realization from the prior uncertainty distribution (Figure 4). Application of
the conditioning data and clipping limits to yield the posterior uncertainty distribution
demonstrates the effect on the means of the distributions.

The results of the Th and Au realizations are plotted as green lines in the upper
graphs of Figure 6. The declustered reference distributions are the black lines. There
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Figure 4: Prior histogram uncertainty.

is a significant reduction in the variance of the realizations in comparison to the spatial
bootstrap realizations, which is the result of the conditioning data and clipping limits.
The distributions of the means of the realizations are plotted in the lower graphs in
green. For comparison, the gray dashed lines represent the prior histogramuncertainty
distributions from Figure 4. The vertical black lines are from the declustered input data.

Sensitivity Analysis
A sensitivity analysis is undertaken to illustrate the impact of independently modifying
the number of conditioning data on the updating of the prior uncertainty distributions
(Figure 7, green lines). Equal-sized subsets of the drill hole data were sequentially with-
drawn from the original data to evaluate the impact of fewer available conditioning
data. No other modifications are made to the workflow. Both Th and Au show a sig-
nificant decrease in the standard deviation of the uncertainty distribution when using
just 20% of the conditioning data in this example.
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Figure 5: Updated realizations with conditioning data and clipping limits.

The effects of increasing the clipping limits in 50m increments (Figure 7, gray lines)
were less pronounced than the effects of the conditioning data. The greatest increase in
the standard deviation occurs at 250m, which is themodeled range of the Th variogram.

Comparison to Simulation without the Multivariate Spatial Bootstrap
A subset comprising 80% of the data (n = 53) is generated to clearly highlight the dif-
ference between the posterior uncertainty distribution and the simulated uncertainty
distribution without the multivariate spatial bootstrap (Figure 8). In comparison to the
simulated Th uncertainty distribution, the standard deviation of the posterior uncer-
tainty distribution increases 33% from σ = 0.24 to σ = 0.32. It is more pronounced for
Au, increasing 80% from σ = 0.10 to σ = 0.18.

The input declustered mean (black line) matches closely the mean of each of the
distributions. The correlation of Th andAu agree with the input correlation of ρTh:Au =
0.50, which demonstrates the spatial relationship between the variables is respected.

5 Summary

Incorporation of themultivariate spatial bootstrap in the geostatistical workflow is used
to improve uncertainty in mineral resources. The parameters of the global input his-
togram are primary factors controlling global uncertainty. Updating of the prior his-
togram uncertainty to the posterior histogram uncertainty is accomplished by (1) con-
ditioning the spatial bootstrap realizations by the input data during simulation and (2)
application of the domain clipping limits. This technique preserves the multivariate
spatial relationships.
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Figure 6: Posterior histogram uncertainty.
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Figure 7: Sensitivity of updating the prior parameter uncertainty considering condition-
ing data (green line) and clipping limits (gray line).

Figure 8: Posterior uncertainty distribution (green line) compared to the simulated un-
certainty distribution without the spatial bootstrap (gray dashed line) and the input
declustered mean (black line).
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