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Learning Objectives

• Review variogram modeling and key parameters including the sill
• Understand when to model the variogram above the sill
• Demonstrate how careful variogram modeling improves estimation

1 Introduction

The variogram is a key input to change of support, kriging, and simulation. It is partly
data-driven from experimental variogram points calculated from the available data
and partly model-driven from the experience of the geostatistician and geological ana-
logues; the variogram model fits the experimental points and incorporates general
knowledge. The variogram is defined with relatively few parameters. The nugget effect,
range and sill are common descriptive terms and specific parameters in a variogram
model. The sill is the focus of this Lesson.

There are many excellent references in geostatistics that discuss the variogram at
length. Some classics include Cressie (2015), Goovaerts (1997), Chiles & Delfiner (2009),
and Rossi & Deutsch (2014). The Teacher’s Aide Gringarten & Deutsch (2001) is another
good reference.

The sill is commonly considered to be the variogram value where the variogram
points or function flatten off at increasing distance; however, the variogram may not
flatten off in some directions and it may flatten off at different values in different direc-
tions. The sill may also be considered as the limit of the variogram as the lag distance
tends to infinity. The sill is also considered to be the variance of the data entering
variogram calculation, but we still face questions about how to model the variogram
relative to the variance. Recommendations for this are provided below.

English words usually have a different meaning depending on context. Our defini-
tion of Variogram Sill in geostatistics: 1. the horizontal variance level where the var-
iogram flattens off (as a descriptive value); 2. the variance of the data used in vari-
ogram calculation (for interpretation - variogram values below this are directly related
and values above this are inversely related); 3. the sum of variance contributions in a
variogrammodel of a stationary regionalized variable (as a parameter of the variogram
model).

2 Variogram

Spatial variability is quantifiedwith a variogram. Consider a regionalized variablewithin
a deemed stationary domain {Z(u),u ∈ A} where Z denotes the variable, u denotes
location and A denotes the domain. The variogram is defined as:

2γ(h) = E{[Z(u)− Z(u+ h)]2}
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Figure 1: Example of directional variograms from an oil sands data set commonly used
in the Citation program - the variogram values have been standardized by the variance.

where h is a lag vector. γ is technically the semivariogram, but we refer to it as
the variogram hereafter. The experimental variogram γ̂ is computed for direction and
distance lags as possible:

γ̂(h) = 1

2N(h)

N(h)∑
i=1

[Z(ui)− Z(ui + h)]2

where N(h) pairs of samples are separated approximately by the lag vector h. Cal-
culating reliable variograms in appropriate directions are the subjects of other Lessons.
The experimental variograms shown as the colored dots in the figure below are inter-
esting. The directional variograms (two horizontal on the left and vertical on the right)
are standardized so the sill (definition 2) is 1.0. According to definition 1, the sills for
the horizontal variograms are 0.55 and 0.8; the sill for the vertical is aiming toward a
value above 1.4. These variograms were modeled by the solid lines - they all have a sill
of 1.0.

The experimental variogram values are supplemented by general geological knowl-
edge and the variogram is modeled by a valid function. Geostatistical calculations re-
quire the variogram for distances and directions that are not reliably informed from the
available data Also, the variogram must constitute a valid measure of distance in the
kriging equations. The form of almost all variogram modeling is taken from the Linear
Model of Regionalization (LMR), that is, a sum of nested structures:

γ(h) =

nst∑
i=0

ciΓi(h)

Γi(h) are the pool of i = 0, . . . , nst structures, where the 0th nested structure is the
nugget effect by convention, ci is the contribution of the ith structure, and each struc-
tural variogram (i = 1, . . . , nst) is defined by seven parameters - three angles and three
ranges (that define anisotropy) and a shape (often spherical, exponential or Gaussian).
The variogram value can be calculated in any direction from this equation. If second
order stationarity is defined, then the covariance is calculated from the variogram:

C(h) = σ2 − γz(h)

where σ2 is the variance or 1.0 if standardized (Rossi & Deutsch (2014)). There are
some important questions outstanding in our discussion of the sill:
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Figure 2: A cyclical variogram that goes above the variance and below the variance in
an oscillating or periodic fashion.

What do we do about cyclical variograms that oscillate above and below the vari-
ance? The figure below shows an examplewhere the variance is 2.42 and the variogram
goes above that (over 4.0) and back below (to nearly 1.0).

What variance is used for variogram standardization or the sill - declustered or equal
weighted?

Should the variogram model be limited to the expected variance sill or match the
data?

The variogram model enters kriging and simulation - the experimentally calculated
points do not. Getting the variogram model right is important. Conventional wisdom
would tell us to fit the variogram at a short scale; this portion of the variogram will
significantly influence estimates and simulated values. In the next section, the kriging
equations will be discussed, the effects of fitting the variogram above the variance will
be discussed.

3 Kriging

Simple kriging (SK) is widely used in the context of the multivariate Gaussian distribu-
tion for simulation and conditioning. Ordinary kriging (OK) is widely used for block
modeling for resource estimation. The SK estimator is written as:

z(u0)SK −m =

n∑
i=1

λSK,i · [z(ui)−m]

where z(u0)
∗ is the estimator at the unsampled location, m is the mean, z(ui), i =

1, . . . , n are the data and λSK,i, i = 1, . . . , n are the weights applied to the data. The
weights are calculated to minimize the expected error variance; they are solved assum-
ing the stationary covariance between the data and between the data and unsampled
location come from C(h) = σ2 − γz(h):
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n∑
j=1

λSK,jC(ui − uj) = C(u0 − ui) i = 1, . . . , n

The OK estimator is written without the mean and is widely recognized as a more
robust estimator in kriging for resource estimation. It is also more flexible to control
the smoothing of the final estimate. The OK estimator:

z(u0)OK =

n∑
i=1

λOK,i · z(ui)

where λOK,i, i = 1, . . . , n are the OK weights applied to the data. These weights are
solved using a pseudo covariance between the data and between the data and unsam-
pled location coming from C(h) = Cmax − γz(h) where Cmax could be the variance, but
is often the sum of variance contributions in the variogram model:{∑n

j=1 λOK,j · C(ui − uj) + µ = C(u0 − ui) i = 1, ..., n∑n
j=1 λOK,j = 1

Many sources of confusion in the sill can now be summarized.
For a stationary regionalized variable, the variance should be used for both SK and

OK to compute the covariance to enter the kriging equations.
The variance used in converting the variogram to covariance values should be the

variance considered in the variogram calculation or in the standardization of the vari-
ogram - the equal weighted variance since the pairs are almost always equally weighted.
Variogram declustering would be considered on a case-by-case basis since there are
different formalisms for that.

For a stationary regionalized variable, the sum of variance contributions should
equal the variance.

For a non-stationary or cyclical regionalized variable the sum of variance contribu-
tions in variogrammodeling will not be the variance. The sumof variance contributions
should not be used in SK with a non-stationary variogram; the variance should be used.

For OK with a non-stationary variogram, the Cmax could be either the variance or
the sum of variance contributions. The weights will be the same in both cases.

Suboptimal results will be obtained when the variogram of a stationary variable is
not fit to the variance. Suboptimal results may be obtained with SK if the software
assumes that the sum of variance contributions is equal to the variance. The first case
can be managed by the professional practice. The second case may require checking
the software. Unfortunately, the GSLIB software Deutsch & Journel (1998) assumes
the sum of variance contributions is the variance. The code should be modified or the
variogram sill fitted to the variance for SK in presence of a trend or cyclicity.

The three options of modeling the variogram are Above The Sill where the variogram
is modeled to the experimental points, but the correct variance is used in the covari-
ance calculation, To The Sill” where the variogram is modeled to the variance and the vari-
ance is used in the covariance calculation, and MaxCov as Sill* where the variogram is
modeled to the experimental points and the sum of variance contributions is used in
the covariance calculation. These are illustrated in the sketch below.

A number of validation runs were performed on real and synthetic data to confirm
the recommendations described above. The table below summarizes one set of results
for two dimensional data with a reasonable data spacing. The three data sets were sim-
ulated: Standard corresponds to a stationary variable, Cyclic corresponds to a variable
that shows a pronounced cyclicity in one direction, and Trend corresponds to a variable
with a pronounced trend in one direction. The performance varies depending on the
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Figure 3: Three alternatives to modeling the variogram.

Figure 4: Kriging performance for SK and OK for three different cases and three differ-
ent ways of modeling with respect to the sill.

Figure 5: Variograms models used for Kriging.

case, but the improvement for modeling the variogram and managing the sill correctly
is likely between 1% to 3% in practice. This is significant.

In summary, the variogram should be fit to reliably calculated variogram points
(above or below the sill) and the variance should be used in the covariance calculation.
Note that this is not standard practice in all software.

4 Conclusion

The sill is an important variogram parameter that is defined and used differently in dif-
ferent contexts. This Lesson clarifies that the sill is a qualitative term describing where
the variogram flattens off, a specific value equal to the variance of the data entering
variogram calculation and a specific value equal to the sum of variance contributions
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in the conventional modeling of a variogram with the linear model of regionalization.
The sum of variance contributions should be set to the variance for stationary simple
kriging (SK). The sum could differ from the variance in specific instances; however, the
variance should be specified separately and used correctly to transform the variogram
values to covariance values. Ordinary kriging (OK) is more robust with respect to how
the variogram is fitted since a pseudo-covariance is used in the solution of the OK equa-
tions.
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