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Learning Objectives

• Review the importance of categorical variable simulation
• Understand Sequential Indicator Simulation
• Appreciate how secondary information reduces uncertainty

1 Introduction

Sequential Indicator Simulation (SIS) is a variogram-based categorical simulation tech-
nique developed by André Journel and François Alabert (Alabert, 1987). It is imple-
mented in most commercial software for geostatistical modeling. SIS is appropriate
when there is no clear geological body geometry, and the spatial continuity is well
described by variograms, for example, in highly diagenetically altered facies (Pyrcz &
Deutsch, 2014). Over the years, several authors (Deutsch, Journel, et al., 1992; Gómez-
Hernández & Srivastava, 1990; P. Goovaerts, 1994; Pierre Goovaerts et al., 1997) imple-
mented SIS with modifications related to various estimators and the use of secondary
variables. Deutsch (2006) combined these variations in a GSLIB-like (Deutsch et al.,
1992) software. This lesson uses a version of that program to demonstrate the applica-
tion of SIS.

Conditional simulation generates equiprobable realizations that honor a pre-defined
structure and the data inputs. Each realization is a possible outcome of the random
function. Kriging minimizes the estimation variance leading to smooth spatial models.
Simulation preserves the variability; therefore, it should be used when variability is crit-
ical to the result (A. Journel & Isaaks, 1984). Variations in permeability have a large
influence on the predicted flow response; therefore, simulation is preferred in most
petroleum reservoir characterization. Simulation often follows a sequential random
path that ensures the resulting realizations reproduce the data, univariate and bivari-
ate statistics (Pyrcz & Deutsch, 2014).

2 Categorical variables

Categorical variables are discrete variables defined through a description, name or la-
bel. In geological modeling the most common type of categorical variable is based on
facies or rock type considering different depositional or alteration characteristics. They
have a central role in establishing volumes within which continuous variables are con-
sidered stationary (Deutsch, 2006). For example, porosity can change abruptly from
floodplain sediments to fluvial channels. In that case, a facies model improves the
continuous rock property distribution, helping to define different stationary domains
based on geological concepts.
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Figure 1: Example of a facies description and the respective indicators for the three
different facies.

Consider a set of mutually exclusive categories indexed by k = 1, . . . ,K. Indicators
(A. G. Journel, 1983) represent the probability of a given category k being present at a
location, that is, when the indicator is 1, the category is present and when it is 0, the
category is not present. A constant discretization length is common practice.

i(u; k) =

{
1, if category k prevails at location u
0, otherwise , k = 1, . . . ,K.

The mean of an indicator variable p̂k (Pyrcz & Deutsch, 2014) is the proportion of
the category. The mean with declustering weights wj is given by:

p̂k =

N∑
j=1

wji(uj ; k)

In addition, the variance is a function of the mean:

V̂ ar{i(u; k)} =

N∑
j=1

wj · [i(uj ; k)− p̂k]
2

= p̂k(1.0− p̂k)

The univariate statistics are important, but the spatial statistics are key to define uncer-
tainty and heterogeneity. Experimental variograms are calculated from the indicators
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(Deutsch et al., 1992):

γ̂(h)k =
1

2N(h)

∑
N(h)

[i(u; k)− i(u+ h; k)]2, k = 1, ...,K.

Indicators have linear increments, thus only linear models like spherical and exponen-
tial are allowed, that is, a Gaussian variogram cannot apply to indicator variables. The
size of the facies intervals should be large relative to the block size or discretization
interval; therefore, the nugget effect on the indicator variograms should be zero. If
the size of the intervals are small relative to the block size, then there would be mixing
within the blocks and the concept of a categorical variable becomes invalid.

The indicator variograms should be modeled consistently, that is, they are not inde-
pendent since the indicators for multiple facies are coregionalized in the same space.
There is no check for this, but fitting all experimental variograms carefully will mitigate
problems with the indicator estimates.

3 Indicator kriging

There is no explicit random function model for indicators. Local conditional probabil-
ity distributions are estimated by kriging. The best kriging option will depend on the
stationarity decision and the use of secondary data. The BlockSIS (Deutsch, 2006) pro-
gram implements nine kriging options to estimate the probabilities. This lesson covers
the three most relevant options: stationary simple kriging (SK), ordinary kriging (OK),
and nonstationary simple kriging using residuals from a locally varying mean (LVM).

Stationary simple kriging estimates the probability for each category based on the
conditioning data and a declustered global mean value. There is no use of secondary
variables. The estimator is defined as:

i∗SK(u; k)− p̂k =

n∑
α=1

λSK
α (u; k) · [i(uα; k)− p̂k]

In ordinary kriging, the sum of the weights is constrained to one so that the global
mean receives no weight; the sample data receive all the weight. The estimator is de-
fined as:

i∗OK(u; k) =

n∑
α=1

λOK
α (u; k) · i(uα; k)

Nonstationary simple kriging with locally varying means calculates the weights in
the same way as stationary simple kriging, with locally varying mean values at every
location. A trend or secondary data define the local probabilities. The estimator is
written as:

i∗LVM (u; k)− pk(u) =

n∑
α=1

λSK
α (u; k) · [i(uα; k)− pk(uα)]

Indicator kriging is repeated for each category considering the category-specific var-
iogram.

Kriging can lead to negativeweights applied to data screened behind closer samples.
In general, this facilitates local extrapolation and can improve the estimation; however,
in some cases, depending on the variogram and local data configuration, this could
lead to negative indicator estimates. A common procedure is reset negative estimates
to zero, then re-standardize all of the values to one (Deutsch, 2006).
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Figure 2: A summary of the SIS workflow – Random path, generated local uncertainty
model, and the simulated facies.

4 Sequential Indicator Simulation (SIS)

The sequential simulation paradigm gained popularity with SIS (Alabert, 1987). The
principle is to decompose the multivariate spatial distribution into a sequence of con-
ditional distributions. The order is arbitrary, but a random order is followed to avoid
artifacts. In the case of SIS, conditional distributions are calculated at each step by
indicator kriging with the original data and previously simulated locations. A search
neighborhood limits the conditioning data for computational efficiency. A category is
simulated at each location using a uniform random number between 0 and 1. The pro-
cedure is repeated until all nodes are defined. The procedure is repeated with different
random numbers for multiple realizations. The figure below illustrates aspects of this
procedure.

Image cleaning
The realizations from SIS may have apparently excessive short-scale variation or noise.
Tominimize this issue, different image cleaning algorithms have been proposed includ-
ing dilatation and erosion (Chiu, Stoyan, Kendall, &Mecke, 2013; Schnetzler, 1994). The
BlockSIS program implements the solution proposed by (Deutsch, 1998), a maximum-
a-posteriori selection (MAPS) whereby the simulated category may be replaced by the
most probable considering a local neighborhood.

Trends from seismic and geologic maps
In many cases, geostatistical simulation relies on limited drill hole or well data. As a
result, areas with sparse data or far from the conditioning data have high uncertainty.
It is possible to include soft secondary data from seismic or conceptual geologic pro-
portion maps to mitigate this uncertainty. Seismic can be a critical source of secondary
data. Seismic data is composed of amplitudes corresponding to an acoustic impedance
contrast between layers (Onajite, 2013). Seismic and facies are comparedwith well logs
and the seismic signal. Different ranges of acoustic impedance may be encountered
for different categories or facies. Seismic data represent a lower resolution than well
logs, but cover an extensive volume. Locally varying mean or proportion maps are cal-
culated and used in the simulation. A good practice is to edit the proportion maps
based on the architectural elements geometry or depositional environments.
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Figure 3: Synthetic 2D data representing a braided fluvial environment with the fifteen
conditioning data on the right. The corresponding acoustic impedance, on the left.

5 Example

The lesson demonstrates three options of kriging in SIS: stationary simple kriging, ordi-
nary kriging, and nonstationary simple krigingwith a locally varyingmean. Synthetic 2D
data representing a braided fluvial environment is presented. There are three facies:
(i) Orange: coarse sand within high energy channels; (ii) Yellow: medium to fine sand
within intermediate energy bar forms; and (iii) Grey: shale formed on low energy flood
plains. The conditioning data are fifteen random locations from a reference image se-
lected to represent a situation of sparsely sampled wells. The grid has a 25x25m cell
size, 130x130x1 (I; J; K) nodes over approximately 11km². From the geological reference
image, a synthetic acoustic impedance was created mimicking the expected seismic re-
sponse to demonstrate the use of secondary information. Coarse sand and medium
to fine sand have lower impedance. The shale has higher impedance. The seismic data
is smoother than the high resolution variations of the facies.

The fifteen conditioning data do not yield reliable indicator variograms. Thus, the
experimental variograms are based on the geological reference image. The variogram
model for all facies is exponential, anisotropic in the direction of 120°, with major and
minor ranges specified in the table below. The variograms have no nugget effect. Indi-
cator variograms should have no nugget effect unless the discretization of the data is
very coarse with respect to the size of the categorical units.

Sparse data could lead tomisinterpretation of the variogram (Pyrcz&Deutsch, 2014)
including a too high nugget effect. Detailed data are usually not available to obtain
stable horizontal variograms. The horizontal variogram could be inferred from a hor-
izontal/vertical anisotropy ratio from conceptual geological models (Kupfersberger &
Deutsch, 1999). Commonly, the vertical variogram is stable due to the dense sampling
along vertical wells. Seismic is another option to infer the horizontal variogram ranges.
In all cases it is crucial to define the variogram considering a site specific local geologi-
cal conceptual model. The experience of the modeler is significant to variogram mod-
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Figure 4: Experimental variograms of sand using only the conditioning data no the top.
On the bottom the experimental variogram of the synthetic 2D data.

eling. Variograms selected for this environment have major/minor ranges of 700/400
for coarse sand, 500/350 for sand, and 900/650 for shale.

For simple kriging in this example, the global mean values come from the refer-
ence image: 13% coarse sand, 39% medium sand, and 48% shale. The locally varying
mean was constructed from the synthetic acoustic impedance and the geological ref-
erence image through a direct transformation using linear functions from the acoustic
impedance distribution for facies. These linear functions can be considered as condi-
tional expectations of the facies proportions given acoustic impedance.

This procedure requires a significant amount of data to be representative of the
distributions. An alternative is to consider Bayes theorem applied to the secondary
data (see lesson: An Application of Bayes Theorem to Geostatistical Mapping).

Two hundred realizations from each method were simulated using the same data
and variograms.

Accuracy and entropy allow an evaluation of the realizations. Accuracy compares
the realizations and the reference image. It is defined here as the proportion of times
the nodes are correct. The SK method presents the lowest accuracy, 0.46, followed by
the OK, 0.50, and the highest for LVM is 0.59. Journel and Deutsch (1993) (A. G. Journel
&Deutsch, 1993) describe entropy in geostatistics as ameasurement of the uncertainty
for a distribution model.

H = −
K∑

k=1

[ln pk]pk ≥ 0

The entropy maps for each method are shown. The entropy maps highlight differ-
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Figure 5: Histograms of acoustic impedance by facies, and linear functions relating
acoustic impedance values and facies proportions.

Figure 6: Facies proportion maps for each facies derived from the acoustic impedance

Figure 7: One example of a realization (n=100) from each method
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Figure 8: Entropy maps using the facies proportion of the 200 realizations.

ences in the methods. The SK entropy is the highest, with an average of 0.98. The high
values are homogeneously spread away from the data, reflecting the variogram and
dependence on the global average. The OK entropy, on the other hand, has a lower
average entropy of 0.75. Regions between samples of the same facies have lower en-
tropy, see the southwest. Areas with three different facies have higher entropy, see
the northeast. The LVM has the lowest average entropy of 0.67. There are regions with
entropy close to zero, even in areas beyond the variogram range. The localmean or pro-
portion maps from seismic control this behavior. For instance, where high impedance
values occur, above 12500(10³ kg/s m²), the probability of shale approaches 1, decreas-
ing the uncertainty. There are areas where the LVM maps increase uncertainty, but on
average, the secondary data reduces uncertainty and increases accuracy.

6 Discussion

SIS has received several criticisms. Emery (2004) (Emery, 2004) mentioned problems
related to the indicator formalism: difficulties in honoring the model parameters and
indicator correlograms leading to problems in multipoint statistics. Another common
criticism is the limited capacity to reproduce the complexity of some geological bodies,
especially curvilinear (Caers & Zhang, 2004; Strebelle, 2002), caused by the limitation of
two-point variogram statistics. In addition, the already mentioned excessive variability,
not consistent with some geological features (Deutsch, 2006). There are three main al-
ternatives for facies modeling: Truncated Gaussian Simulation (TGS), Object modeling,
and Multi-point statistics (MPS).

TGS is also a variogram-based techniquepresenting similar results as SIS (Galli, Beucher,
Le Loc’h, Doligez, et al., 1994). Some differentiating features include greater control on
facies transitions, non-constant proportions defined by vertical proportion curves, hor-
izontal constraints, and images smoother than SIS, resulting from the Gaussian model.
It is suitable for a geological environment with low variability and well-defined facies
transitions.

Object modeling is the stochastic simulation of objects described by a mathemati-
cal model. The expected geometries for respective facies determine the choice of the
objects, usually defined by shape, direction, size, and frequency. A typical example
of object modeling is fluvial channels (Deutsch & Wang, 1996; Holden, Hauge, Skare,
& Skorstad, 1998), where curvature and continuity are better represented than using
variogram-based algorithms. Zhou (2018) (Zhou, Shields, Tyson, & Esterle, 2018) dis-
cusses the low capacity of the SIS to reproduce fluvial channels relative to object mod-
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eling. The most significant object modeling restriction is the limited number of objects
and challenges of conditioning.

Multi-point statistics (MPS) algorithms are another alternative. Theparameters used
to define the spatial continuity are established with multiple point statistics calculated
from a training image. The advantage is to extract complex structures from geologically
realistic images. Although training images are challenging to define, mainly because of
stationarity requirements (Caers & Zhang, 2004), MPS has potential in certain circum-
stances.

No solution is appropriate for all geological contexts. For that reason, the selec-
tion of a facies modeling algorithm should consider spatial distribution characteristics
of the modeled facies. SIS is a simple solution with straightforward parameterization
when the facies distribution is easily described by anisotropic variograms, especially in
settings with high variability and complex facies transitions. Considering the different
options of SIS, the LVM is a reasonable option when secondary information is available.

7 References

Alabert, F. (1987). Stochastic imaging of spatial distributions using hard and soft infor-
mation (Master’s thesis). Stanford University, Stanford, CA.

Caers, J., & Zhang, T. (2004). Multiple-point geostatistics: A quantitative vehicle for
integrating geologic analogs into multiple reservoir models.

Chiu, S. N., Stoyan, D., Kendall, W. S., & Mecke, J. (2013). Stochastic geometry and its
applications. John Wiley & Sons.

Deutsch, C. V. (1998). Cleaning categorical variable (lithofacies) realizations with
maximum a-posteriori selection. Computers & Geosciences, 24(6), 551–562.

Deutsch, C. V. (2006). A sequential indicator simulation program for categorical vari-
ables with point and block data: BlockSIS. Computers & Geosciences, 32(10), 1669–
1681.

Deutsch, C. V., Journel, A. G., et al. (1992). Geostatistical software library and user’s
guide. New York, 119(147).

Deutsch, C. V., & Wang, L. (1996). Hierarchical object-based stochastic modeling of
fluvial reservoirs. Mathematical Geology, 28(7), 857–880.

Emery, X. (2004). Properties and limitations of sequential indicator simulation. Stochas-
tic Environmental Research and Risk Assessment, 18(6), 414–424.

Galli, A., Beucher, H., Le Loc’h, G., Doligez, B., et al. (1994). The pros and cons of the
truncated gaussianmethod. In Geostatistical simulations (pp. 217–233). Springer.

Gómez-Hernández, J. J., & Srivastava, R.M. (1990). ISIM3D: AnANSI-c three-dimensional
multiple indicator conditional simulationprogram. Computers &Geosciences, 16(4),
395–440.

Goovaerts, P. (1994). Comparative performance of indicator algorithms for mod-
eling conditional probability distribution functions. Mathematical Geology, 26(3),
389–411.

Goovaerts, Pierre et al. (1997). Geostatistics for natural resources evaluation. Oxford
University Press on Demand.

Holden, L., Hauge, R., Skare, Ø., & Skorstad, A. (1998). Modeling of fluvial reservoirs
with object models. Mathematical Geology, 30(5), 473–496.

Journel, A. G. (1983). Nonparametric estimation of spatial distributions. Journal of
the International Association for Mathematical Geology, 15(3), 445–468.

Journel, A. G., & Deutsch, C. V. (1993). Entropy and spatial disorder. Mathematical
Geology, 25(3), 329–355.

GeostatisticsLessons.com©2022 T. A. Mizuno and C.V. Deutsch 9

http://geostatisticslessons.com


Journel, A., & Isaaks, E. (1984). Conditional indicator simulation: Application to a
saskatchewan uranium deposit. Journal of the International Association for Math-
ematical Geology, 16(7), 685–718.

Kupfersberger, H., & Deutsch, C. V. (1999). Methodology for integrating analog geo-
logic data in 3-d variogram modeling. AAPG Bulletin, 83(8), 1262–1278.

Onajite, E. (2013). Seismic data analysis techniques in hydrocarbon exploration. Else-
vier.

Pyrcz, M. J., & Deutsch, C. V. (2014). Geostatistical reservoir modeling. Oxford univer-
sity press.

Schnetzler, E. (1994). Visualization and cleaning of pixel-based images (PhD thesis).
Stanford University.

Strebelle, S. (2002). Conditional simulation of complex geological structures using
multiple-point statistics. Mathematical Geology, 34(1), 1–21.

Zhou, F., Shields, D., Tyson, S., & Esterle, J. (2018). Comparisonof sequential indicator
simulation, objectmodelling andmultiple-point statistics in reproducing channel
geometries and continuity in 2D with two different spaced conditional datasets.
Journal of Petroleum Science and Engineering, 166, 718–730.

Citation
Mizuno, T., & Deutsch, C. (2022). Sequential Indicator Simulation (SIS). In J.L. Deutsch

(Ed.), Geostatistics Lessons. Retrieved fromhttp://www.geostatisticslessons.com/lessons/sequentialindicatorsim

GeostatisticsLessons.com©2022 T. A. Mizuno and C.V. Deutsch 10

http://geostatisticslessons.com

	Introduction
	Categorical variables
	Indicator kriging
	Sequential Indicator Simulation (SIS)
	Example
	Discussion
	References

