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Learning Objectives

• Define the term QKNA and its place within the resource modeling.
• Understand the significance of each QKNA measure and how it should be applied.

1 Introduction

Various researchers have closely examined the linear estimation aspect of Kriging, as well as the per‐
formance for each block estimate. To assess the kriging performance, a set of metrics collectively
referred to as Quantitative Kriging Neighborhood Analysis (QKNA) is employed. QKNA encompasses
kriging variance (KV), kriging efficiency (KE), statistical efficiency (SE), slope of regression (SR), mag‐
nitude of negative weights (NW), and simple kriging weight to the mean (WM). These metrics are
calculated for each block in a block model and quantify kriging performance considering the avail‐
able data, the variogram, and block geometry. This lesson reviews QKNA measures, discusses how
they should be applied, and shows a small practical example. Furthermore, it exposes why QKNA
does not support the choice of block size or search radius.

2 Context

A Random Variable Z at many locations u within a stationary volume of interest defines a random
function or regionalized variable. Data represents a partial sampling of the regionalized variable
and is denoted:

{Z (ui) = z(ui), i = 1, . . . , n}

where z(ui) represents a specific location within that domain. Estimation at unsampled locations
is then carried out for mining reserves and resource assessment. The block size V , consistent with
the mining method, is chosen to discretize the stationary domain reasonably. The block size need
not be constant throughout the domain; smaller blocks may be warranted in areas of dense data
and near geological boundaries. The estimation of block volumes (Z∗

K(uV )) is achieved through a
linear combination of n nearby data:

Z∗
K(uV ) =

n∑
i=1

λi(uV )z(ui) +

(
1−

n∑
i=1

λi(uV )

)
·mz

The weight applied to each data point is denoted by λi(uV ), and the stationary mean is mz . The
reader is referred to (Ashtiani & Deutsch, 2024) for further detail regarding Kriging.

3 Quantitative Kriging Neighborhood Analysis (QKNA)

QKNA consists of six parameters that assess the performance of each estimate Z∗
K(uV ) on a block‐

by‐block basis is described below.
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Kriging Variance (KV)
The Kriging Variance (KV) is the minimized estimation error in Kriged estimation, that is, the ex‐
pected squared difference between the true value and the estimated value. KV is calculated using
covariance values (derived from the variogram) and the weights assigned to the data points within
the search neighboorhood. The equation for KV is:

KV (uV ) = σ2
K(uV ) =

n∑
i=1

n∑
j=1

λi(uV )λj(uV )C(ui,uj)− 2

n∑
i=1

λi(uV )C̄(ui,uV )

+σ2 − γ̄(V, V )

where C(ui,uj) is the covariance between two data points, C̄(ui,uV ) is the average covariance
between each data and the block being estimated, σ2 is the variance of the data for the domain,
and γ̄(V, V ) is the average semivariogram within the block.

Low KV is desirable, and this can be achieved by incorporating more data in the estimation, es‐
timating larger blocks, and opting for Simple Kriging with no constraints. However, these strategies
may not apply in scenarios where the search radius is reduced to avoid excessive smoothing and
relax the dependence on stationarity. In addition, KV in conjunction with Kriging Efficiency serves
as a closely interrelated set of parameters for assessing the performance of Kriging.

Kriging Efficiency (KE)
Kriging Efficiency (KE) was introduced by (Krige, 1996) as a metric for evaluating the efficiency of
block estimates. The equation for KE is:

KE(uV) = 1− σ2
K(uV)

σ2 − γ̄(V, V )

where σ2
K(uV ) is the KV, σ2 is the variance of the data for the domain, and γ̄(V, V ) is the average

semivariogram within the blocks. The denominator on the right is the block variance. A high KE is
preferred.

A high KE signifies a low KV, indicating the presence of numerous closely spaced data points and
minimal smoothing in the estimate. Conversely, a low KE implies a high KV, suggesting a scarcity of
local data and the potentially for a smoothed estimate. Krige also noted that KE can be negative
when the KV exceeds the true block variance, resulting in block estimates close to the local mean.
Furthermore, KE is a dimensionless parameter, expressed relative to 1, considers the block size and
local data configuration. It exhibits a perfect negative linear relationship with KV, KE is zero when
KV is the block variance and KE is one when the KV is zero. KE can be seen as a local coefficient of
determination (R2) measure and not as a measure of efficiency in a statistical sense.

Statistical Efficiency (SE)
Statistical Efficiency (SE) serves as an indicator of how closely the minimized estimation variance
approaches the theoretically minimum value. When an estimator is constrained by a restricted
search or implemented as Ordinary Kriging, it leads to an estimate with lower statistical efficiency (J.
Deutsch, Szymanski, & Deutsch, 2014). The Global Simple Kriging Variance (GSKV) represents the
theoretically minimum value; therefore SE is defined as:

SE(uV ) =
GSKV (uV )

KV (uV )
=

σ2
GSK(uV )

σ2
K(uV )

This measure falls between 0 and 1. The ideal efficiency would be reached when KV (σ2
K(uV )) is

equal to the GSKV (σ2
GSK(uV )). It will be less than 1 when KV is higher than GSKV. Like all QKNA

measures, SE varies on a block‐by‐block basis. A lower SE indicates that more restrictions are being
considered in the kriging. The theoretical Slope of Regression provides similar information.
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Slope of Regression (SR)
The Slope of Regression (SR) provides a measure of conditional bias, measuring the slope of the
linear regression of the true value on the estimate. This is directly observed in cross validation, but
can also be theoretically calculated on a block‐by‐block basis using expected values derived from
covariances. The theoretical expectation of the Slope of Regression is calculated as follows:

E{Z(uV ) | Z∗
K(uV ) = zuV

} ≈ a+ b(uV )zuV
̸= zuV

SR(uV ) = b(uV ) =
Cov(Z(uV ), Z

∗
K(uV ))

σ2
Z∗

K(uV )

=

∑n
i=1 λi(u)C̄(ui,uV )∑n

i=1

∑n
j=1 λi(uV )λj(uV )C(ui,uj)

where Z(uV ) is the true block value, Z∗
K(uV ) is the Block Kriging estimate value, σ2

Z∗
K(uV ) is the

Kriging variance of the estimated values, C̄(ui,uV ) is the average covariance within the block, and
C(ui,uj) is the covariance between data.

In an ideal scenario, a SR value of one indicates local conditional unbiasedness, a characteristic
of Simple Kriging estimates. However, the presence of conditional bias (SR less than 1) is the result
of restricting the search in Ordinary Kriging and Kriging with a trend. This suggests that high‐grade
estimates are overestimated, while low‐grade estimates are underestimated.

Negative Weights (NW)
Negative Weights (NW) in kriging are mathematically optimal and support the local extrapolation
of trends when the variogram indicates a high degree of continuity in the regionalized variable. De‐
spite their theoretical optimality, negative weights can lead to practical problems such as negative
estimates. Evaluating the magnitude of negative weights applied in each block estimate is useful.
The subset of locations where the Kriging Weights are negative (λj < 0, j = 1, . . . , n) are deter‐
mined and a summary measure defined as:

NW (uV ) =
1

n

n∑
j=1

|λj (uV )| · 100

This equation calculates the absolute average of the sum of negative weights on a block‐by‐block
basis, yielding zero if there are no negative weights. NW arise when data locations are screened
behind other data more correlated with the location being estimated. In general, NW do not pose
any problem as long as they do not represent more than, say, 5% of the total weights.

While NW can enhance estimation by effectively capturing local trends, theymay be suitable for
smooth variables such as elevations or isopach values. However, in applications involving physical
quantities such as ore grades, negative weights may pose challenges in areas of extreme high grade.
Attempts have beenmade to address theseweights (Clayton V. Deutsch, 1996; Journel & Rao, 1996);
however, (Vann, Jackson, & Bertoli, 2003) recommended not modifying them, as doing so could
potentially introduce conditional bias.

Weight to the Mean (WM)
In Simple Kriging, the sumof theweights is not constrained to sum to one, and any remainingweight
is allocated to the mean, which is assumed to be known. Fewer local data leads to more weight to
the mean. The Weight to the Mean (WM) is calculated from the linear estimator:

WM (uV ) = 1−
n∑

i=1

λi (uV )

where λi (uV) is the weight assigned for each data.
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Figure 1: From left to right: Location map, Histogram and Variogram model of the variable Au(g/t).

A largeWM implies a significant influenceof the localmeanon the estimate, resulting in smoother
estimates. Conversely, a small WM indicates that the local mean has less influence, potentially lead‐
ing to estimates that are more responsive to the local data values. This measure serves as a diag‐
nostic tool for comprehending the data’s spatial distribution (Rivoirard, 1987). A large WM would
indicate more problematic estimates with less influence from local data.

4 Example

TheRed13data is employed for this example, consisting of a 2D spatial configuration spanning 600m
in elevation and 300 m along the Northing strike direction, with a total of 67 drill hole intersections.
Au, Ag, Cu, and Zn assays are available. The focus here will be on the gold variable. Ordinary Kriging
is used for the first five QKNA measurements, followed by Simple Kriging for the final one. The
search radii is deliberately large to emphasize the impact of both data quantity and block dimensions
(a sensitivity will be shown at the end). The example was carried out using GSLIB software (Clayton
V. Deutsch & Journel, 1998), considering a block size of 5m x 5m.

The first figure provides the location map of the intersections, the grade distribution, and the
variogrammodel. The variogram was modeled with a low nugget effect, as the data pertains to the
thickness of the vein structure, which is expected to vary smoothly.

Utilizing 25 data points in each local search, Figure 2 shows three subplots with the Ordinary
Kriging estimates, KV, and KE. The KV plot indicatesminimal variance at data points, which increases
values when the data spacing increases. A lower KV indicates better estimation quality. In contrast,
the Kriging Efficiency plot shows high efficiency at data points and lower values as the data spacing
increases.

Figure 3 illustrates the improvement in SE with the inclusion of additional information (n=10, 20,
30) in the estimation process. The highest efficiency values are depicted in white. Using fewer data
points results in greater variability compared to the true values, while efficiency improves with an
increase in data, contributing to a more accurate estimation.

In Figure 4, the influence of data on the estimation quality relative to the true value is depicted.
A SR less than 1 indicates an overestimation of high values and an underestimation of low values.
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Figure 2: From left to right. Estimation map using OK, Estimation Variance (KV) map, and Kriging
Efficiency (KE) map.

Figure 3: Statistical Efficiency map considering different number of data used for estimation
(n=10,20,30).
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Figure 4: Slope of Regression map considering different number of data used for estimation
(n=10,20,30).

Figure 5: Negative Weight map considering different number of data used for estimation
(n=10,20,30).
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Figure 6: Weight to the Mean (SK) map.

Notably, with 30 data points, many values are very close to one.
NegativeWeights are assigned to data screened behind closer datamore highly correlated to the

location being estimated and increase asmore data is considered. Figure 5 illustrates the increase in
negative weights as more data are considered. In regions with higher sample density, the Negatives
weights per block increase with the addition of more data. Additionally, in areas of lower sample
density or where there is no sampling, at least one negative weight is present. Blank space in the
map represents blocks that there is only positive weights.

In Simple Kriging, the Slope of Regression (SR) is always one, but the Weight to the Mean (WM)
is used as a diagnostic of data configuration and smoothing. Figure 6 shows this with larger WM
values when data become more widely spaced. Slightly negative WM values may be encountered
within regions of high data density, constituting less than 1% of the total.

5 Discussion

In Figure 7, the expected behaviour of KV, KE, SE, and SR are presented forOrdinary Kriging for a fixed
block size of 5m x 5m as more data are included in the search. The QKNA measures systematically
improve as more data is included. All measures show a monotonic behaviour, either increasing or
reducing with the inclusion of more data, reaching asymptote values. This illustrates why QKNA
does not provide definitive support on the selection of search parameters.

Regarding the block size, Figure 8 shows the QKNA measures for different block dimensions
systematically improved. The number of data used for this figure remains the same. The SE and SR
do not change to any significant degree, but the KV and KE systematically improve with larger block
sizes. This illustrates why QKNA does not provide definitive support on the selection of block size.
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Figure 7: SE, SR, KV, and KE variation over data.

Figure 8: SE, SR, KV, and KE variation by increasing block size.
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From these measures of performance, Kriging estimation is always better with more data and
with a larger block size. At a certain point, more data does not change the estimate; a maximum
of 25 data for a 2D configuration and 50 for a 3D configuration seem reasonable. In the context of
Kriging, there is an inherent level of smoothness that is acceptable according to the Kriging Plan (C.
V. Deutsch & Deutsch, 2015). It is important to note that smoothness depends weakly on block size
but depends strongly on the number of data used in ordinary kriging.

The selection for the search radius should be aligned with the medium to long‐range variogram
anisotropy. There are situations when a larger search radius than the range may be beneficial, al‐
lowing for the inclusion of data beyond the range to improve the estimation of the local mean in
ordinary kriging. On the other hand, for zonal anisotropy, choosing a search radius less than the
range is practical. In practical resource modeling, it is common to consider a multiple‐pass search
strategy with increasing search radius with increasing search pass. The QKNA measures of perfor‐
mance are sensitive to the details of the multiple pass search and, perhaps, could be used in the
design of the multiple‐pass search.

The determination of the block size in mining operations involves a careful evaluation of multi‐
ple factors, including engineering considerations, ore deposit geometry, equipment size, and data
spacing. This decision holds substantial implications for pit design optimization and overall mine
planning (Rossi & Deutsch, 2013). Aside from the considerations mentioned, the block dimensions
chosen should dealwith the smoothness implied in the upscaling process (Harding&Deutsch, 2019).
Choosing a relatively small block size leads to slightly worse QKNA measures, but the estimates are
more sensitive to the search setup than the block size.

In addition to the block size and search plan, the variogram has a large impact on the QKNAmea‐
sures of performance. The variogram, derived from the available data, represents the underlying
regionalized variable and cannot be easily altered to improvemeasures of performance. Geometric
and zonal anisotropy will combine with the block size and orientation to change the measures. A
variable with less structure will have a higher nugget effect, shorter range, or a variogram shape
that increases quickly. In this case, there will be fewer negative weights, but all other measures of
performance will appear worse.

6 Conclusions

Achieving a low Kriging Variance (KV), high Kriging Efficiency (KE), high Statistical Efficiency (SE),
Slope of Regression (SR) close to one, few Negative Weights (NW), and a low Weight to the Mean
(WM) indicates a robust kriged estimates. The utilization of these Quantitative Kriging Neighbor‐
hood Analysis (QKNA)measures serves as a tool in understanding the performance of a blockmodel.
QKNA measures implicitly suggest using many data in the estimation of large blocks, but there are
many practical considerations to be considered. A major decision in the choice of a kriging plan is
the purpose of the estimate. Final estimates in grade control should place emphasis on these mea‐
sures. Long range resource estimates would have to consider the information effect and the risk of
excessive smoothing if these measures are given priority.
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