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Learning Objectives

• Understandwhymultivariate Gaussian transforms are used for geostatistical
modeling.

• Reviewessential steps of the projectionpursuitmultivariate transform (PPMT).
• Interpret PPMT results with data of varying dimensions to consolidate under-
standing of the technique.

1 Introduction

Linear decorrelation transforms, such as principal component analysis (PCA) and min/-
max autocorrelation factors (MAF) are popular geostatistical tools for modeling mul-
tiple geological variables. Readers unfamiliar with these methods are encouraged to
review the associated lessons as they provide the foundation formethods in this lesson.
Linear decorrelation transforms are commonly applied within geostatistical simulation
workflows that follow five primary steps:

1. Standardization or a normal score transform is used to center the variables and
improve interpretability

2. A linear transform is used to decorrelate the variables
3. A normal score transform is applied to the decorrelated variables, making them

univariate Gaussian
4. Realizations of the transformed variables are simulated independently, assuming

they follow the uncorrelated multivariate Gaussian (multiGaussian) distribution
5. The normal score, linear and standardization back-transforms restore the original

correlation and units to the realizations

There are potential issues with this workflow. First, the normal score transformmay
re-introduce correlation to the decorrelated variables. Second, and more significantly,
dependence may exist in the decorrelated variables. A correlation coefficient parame-
terizes a multiGaussian distribution such as the schematic illustration below, but does
not parameterize data with complexities such as non-linearity, heteroscedasticity and
constraints.

Any dependence that is not parameterized by the correlation coefficient will not
be removed by linear decorrelation transforms. If remnant dependence is significant
when applying Step 3 above, the back-transformed realizations are unlikely to repro-
duce the original multivariate dependencies, as well as univariate properties such as
the histogram. This motivates multiGaussian transforms, which facilitate the following
workflow:

1. A multiGaussian transform makes the variables uncorrelated and multiGaussian
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Figure 1: Schematic illustration of bivariate complexities.

2. Realizations of the transformed variables are simulated under the assumption of
independence

3. The multiGaussian back-transform restores the original multivariate dependen-
cies and units to the realizations

The key to this workflow is that an uncorrelated and multiGaussian distribution is
independent by definition so that the assumption in Step 2 is valid. Unlike linear decor-
relation, the multiGaussian transform removes multivariate complexities before rein-
troducing them to simulated realizations. This workflow was introduced by (Leuangth-
ong&Deutsch, 2003), where the stepwise conditional transform (Rosenblatt, 1952) was
used.

Although suitable in some cases, the binning nature of stepwise often creates chal-
lenges for greater than 2 to 4 variables. This served as primary motivation for the
projection pursuit multivariate transform (Barnett, Manchuk, & Deutsch, 2014), which
applies a modified form of the transform that is internal to projection pursuit density
estimation (Friedman, 1987; Hwang, Lay, & Lippman, 1994). Relative to stepwise, the
PPMT may be applied to additional variables and requires fewer implementation pa-
rameters. This lesson begins by outlining the major steps of the PPMT. After demon-
strating the transform, practical considerations relating to its use within a multiGaus-
sian simulation workflow are discussed.

2 Transform Steps

The PPMT is composed of two major steps, pre-processing and projection pursuit. Pre-
processing is used to make the data marginally Gaussian and remove linear depen-
dence, before projection pursuit makes the datamultiGaussian through removing com-
plex dependence. Readers are referred to (Barnett et al., 2014) and (Barnett, Manchuk,
& Deutsch, 2016) for additional information.

Pre-processing
Consider k geological variables Z1, ..., Zk that are sampled at n locations to provide the
data matrix Z : zα,i, α = 1, ..., n, i = 1, ..., k. The first pre-processing step applies the
normal score transform (Bliss, 1934; Verly, 1983). Although it is used extensively in geo-
statistics, the normal score transform is formally defined and schematically illustrated
below since it is also used within projection pursuit:

Y : yα,i = G−1 (Fi(zα,i)) , for α = 1, ..., n, i = 1, ..., k

where probabilities p are matched between the cumulative distribution function
(CDF) of each variable Fi and the standard Gaussian distribution G. The resulting Y
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Figure 2: Schematic illustration of the normal score transform.

data is univariate standard Gaussian (or standard normal), which beyond being a tar-
geted final data property, also improves robustness of the covariance matrix that is
calculated in the next step. The standard Gaussian distribution has amean of zero and
variance of one, which simplifies calculations that follow.

The second pre-processing step is data sphereing, which transforms the data to be
uncorrelated with unit variance. Begin by calculating the covariance matrix:

Σ : Ci,j =
1

n

n∑
α=1

y2α,i, for i, j = 1, ..., k

Spectral decomposition ofΣ is then performed yielding the orthogonal eigenvector
matrixV : vi,j , i, j = 1, ..., k and the diagonal eigenvalue matrixD : di,i, i = 1, ..., k:

Σ = VDVT

The sphereing transform (specifically, spectral decomposition sphereing) is given as:

X = YVD−1/2VT

The rotated data has an identity covariance matrix, meaning that X1, ..., Xk have a
variance of one and are uncorrelated. The VT term rotates the variables back to their
original basis, whichminimizes themixing of Y1, ..., Yk amongstX1, ..., Xk, throughmaxi-
mizing the loading of the Yi variable onto its correspondingXi variable. Similarly, subse-
quent projection pursuit transforms the variables to bemultiGaussian in amanner that
minimizes theirmixing. This ‘gentle’ transformation of the datameans that unique char-
acteristics of the original variables (e.g., their respective variograms) are relatively well-
preserved in the uncorrelated multiGaussian data, making their reproduction more
likely following independent geostatistical simulation and back-transformation.

The PPMT is demonstrated with nickel laterite data, where only two variables are
used initially for visual clarity. The scatter plots below display the pre-processing steps,
where nickel (Ni) and iron (Fe) are normal score and sphere transformed. The influence
of outlier values on the correlation coefficient (ρ) is evidentwhen comparing the original
and normal score data. Sphereing is shown to remove correlation, but not the complex
dependencies that exist between Ni and Fe. These complexities are addressed with
projection pursuit.

Projection Pursuit
Consider a kx1 unit length vector θ and the associated projection of the data upon it,
p = Xθ. Any θ should yield a p that is univariate Gaussian if X is multiGaussian. With
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Figure 3: Scatter plots of the original, normal score and sphered data.

this in mind, define a test statistic (termed projection index) I(θ), which measures uni-
variate non-Gaussianity. For any θ where the associated p is perfectly Gaussian, I(θ)
is zero. Projection pursuit uses an optimized search to find the θ that maximizes I(θ),
meaning that it finds the vector with the most non-Gaussian projection of X. Read-
ers are referred to (Friedman, 1987) for additional details on the projection index and
optimized search.

After determining the optimum θ,X is transformed to X̃, where the projection p̃ =
X̃θ is standard Gaussian. This is accomplished using several steps. Begin by calculating
the orthogonal matrix:

U = [θ,ϕ1,ϕ2, ...,ϕk−1]

where each kx1 unit vector ϕi are calculated using the Gram-Schmidt algorithm
(Reed & Simon, 1972). Themultiplication ofX andU, results in a transformation where
the first column is the projection p = Xθ:

XU = [p,Xϕ1,Xϕ2, ...,Xϕk−1]

Next, let Θ be a transformation that yields a standard Gaussian projection p̃, while
leaving the remaining orthogonal directions intact:

Θ(XU) = [p̃,Xϕ1,Xϕ2, ...,Xϕk−1]

To be clear, Θ is simply a normal score transform of the first column of XU. Multi-
plying this result byUT returns Θ(XU) to the original basis:

X̃ = Θ(XU)UT

The transformed multivariate data X̃ will now yield a Gaussian projection along θ
and therefore have a projection index of I(θ) = 0. The optimized search for the maxi-
mum projection index may be repeated on X̃ to find other complex directions.

Scatter plots in the multi-panel figure below display select projection pursuit iter-
ations, beginning from the sphered data that was displayed above. Readers using a
web-browser may view each iteration with the interactive figure that follows. The ori-
entation of the displayed probability density function (PDF) corresponds with the opti-
mum θ, where the PDF is shown to be non-normal and normal before and after trans-
formation. The Y2 coloring (normal score Fe values) is used to understand the relative
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movement of data in each transform, displaying that the data is made multiGaussian
with minimal mixing. The left panel displays progression of the projection index I(θ)
on a logarithmic axis, showing that non-Gaussianity of the projection greatly decreases
following 15 iterations. The iterations show an increase in the projection index, which
correspond primarily with a local optimum being found on the previous iteration. The
highlighted percentiles correspond with stopping criteria that are described in the next
section.

Stopping Criteria
Choosing the target value towhich theprojection index I(θ)must descend is not straight-
forward. Increasing k dimensions make the discovery and resolution of complexity in
the data more difficult. A smaller number of n observations make the projections less
reliable for detecting meaningful multivariate structure. These characteristics are also
observed in random samples from amultiGaussian distribution, where reducing n and
increasing k creates an increasingly non-Gaussian random sample.

Drawing on this parallel, the target I(θ) for PPMT stopping could be determined by
random samples from a multiGaussian distribution. A bootstrapping algorithm is im-
plemented, wherem distributions of matching k and n are randomly sampled from the
Gaussian CDF. A projection index value I(θ) is then calculated for all m distributions
along k random orthogonal unit vectors. This process yields an mxk distribution of
projection indices, which may be used for targeting a very Gaussian distribution (P01
percentile) or barely Gaussian distribution (P99). For example, targeting the P01 per-
centile would cause the PPMT to terminate after the 14th iteration according to the
figure above. This means that the transformed data is more multiGaussian that 99%
of the randomly generated multiGaussian distributions.

3 Nickel Laterite Example

The PPMT was demonstrated above with only k = 2 variables to aid in visual inter-
pretation. It may be used effectively, however, for transforming data of larger k to
be uncorrelated and multiGaussian. The Ni and Fe variables that a were previously
presented, are drawn from a Ni laterite dataset that also includes SiO2, MgO, Co and
Al2O3. In particular, it is important that geostatistical models reproduce the complex
relationship that exists between Ni, Fe, SiO2, and MgO.

Scatter between these original variables is displayed in the lower triangle of the
below plot, where they are colored by the associated Gaussian kernel density estimate
to provide an indication of the multivariate point densities. Observe that the complex
relations between these variables are not parameterized by the displayed correlation
coefficients. Applying linear decorrelation transforms would remove their correlation,
but would not make them independent.

The PPMT was applied with a projection index target of the P01 percentile, as well
as a maximum of 150 iterations in case that target cannot be achieved. The algorithm
terminated after 150 iterations, having only reached the P13 percentile. Kernel den-
sity coloring of the transformed scatter plots (upper triangle) approximates the multi-
Gaussian density contours, while themajority of correlation coefficients are zero to the
second decimal. Given that variables are more multiGaussian than 87% of randomly
generated multiGaussian distributions, while being virtually uncorrelated, it is reason-
able to simulate them under an assumption of independence.
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Figure 4: Visualization of select projection pursuit iterations and progression of the
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Figure 5: Scatterplots of the original and transformed nickel laterite data.

4 Practical Considerations

There are several practical considerations for using the PPMT in simulation workflows,
as discussed in (Barnett et al., 2016). Both the PPMT transformed data and indepen-
dently simulated realizations are assumed to follow the standard multiGaussian distri-
bution. Applying the PPMT back-transform should then provide realizations thatmatch
the original multivariate distribution. Unfortunately, simulated realizations may not be
standard Gaussian. For example, a large variogram range relative to themodel domain
size leads to realizations with a variance less than one. The resulting mismatch of data
and realization distributions in Gaussian units will lead to a mismatch of distributions
in original units following back-transformation. Realizations will not reproduce the orig-
inal multivariate distribution andmay not reproduce its marginal distributions (e.g, his-
tograms). Applying histogram corrections (Journel & Xu, 1994) in Gaussian and/or orig-
inal space may be necessary in such cases.
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The variogram model that is used for simulating each PPMT transformed X̃i vari-
able should be fit to the corresponding normal score transformed Yi variable (output
from the first pre-processing step). Although non-intuitive, this is often necessary since
the removal of multivariate dependence between regionalized variables can lead to
destructuring of their spatial continuity. Fitting variogram models to the normal score
transformed variables has been found to provide the most effective reproduction of
the original variograms following simulation and back-transformation. This approach
is reasonable since each Yi is heavily loaded on X̃i.

Although the PPMT may be applied to data of any reasonable n samples and k di-
mensions, its modeling workflow generally performs better with decreasing k and in-
creasing n. With a relatively large k (e.g., k > 10) and relatively small n (e.g., n < 1000),
sampling of multivariate space becomes very sparse. A simulated node may then be
located in an area of Gaussian space that is far from the nearest transformed data, in-
creasing the likelihood that the interpolation that is implicit to the back-transform leads
to problematic results (e.g., values beyond visual constraints in original space). Using
the Gibbs sampler (Geman & Geman, 1984) to populate multivariate space with addi-
tional pseudo-data is recommended if such problems are observed. This pseudo-data
is input to the PPMT for improving the noted issue, although it is not used for model
conditioning.

5 Summary

MultiGaussian transforms are powerful tools for geostatistical modeling. Multivariate
dependencies, including complex relations, are removed by these techniques, allowing
for simulation under a valid assumption of independence. The back-transform then re-
stores original units and complexity. Linear decorrelation transforms only remove lin-
ear dependence and are unlikely to reproduce complexmultivariate features, although
they remain appropriate in the absence of such features.

The PPMT transform was discussed in this lesson, which applies a modified ver-
sion of the multiGaussian transformation that is internal to projection pursuit density
estimation. Several important considerations were then listed for applying the PPMT
within simulation workflows.
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