
Transforming Data to a Gaussian
Distribution

Michael J. Pyrcz1 and Clayton V. Deutsch2

1University of Texas at Austin
2University of Alberta

Learning Objectives

• Motivate the use of the Gaussian distribution
• Understand the mechanics of quantile‐to‐quantile transformation
• Review the requirement of a representative source distribution
• Understand transformation details including despiking and tail extrapolation

1 Why Do We Use the Gaussian Distribution?

Parametric models sometimes relate to an underlying theory, for example, the Gaussian distribu‐
tion is the limit distribution for the sum of many independent random variables. Although some
variables can be qualitatively described by similarities to parametric distributions such as the Gaus‐
sian (normal) or lognormal distribution, in practice, there is no general theory that would predict
the form of probability distributions for earth science related variables.

Although the rock properties that wemodel are not Gaussian distributed, themultivariate Gaus‐
sian distribution is unique and permits the straightforward inference of conditional distributions;
there are no practical alternatives to compute conditional distributions and simulate continuous
properties. Modern geostatistical algorithms and software all invoke themultivariateGaussian (MG)
distribution for probabilistic prediction of continuous properties. A requirement of theMG distribu‐
tion is that the univariate distribution must be Gaussian. The procedure developed early on in mul‐
tivariate statistics and adopted by geostatistics is to: (1) transform the data to a univariate Gaussian
distribution, (2) proceed with algorithms that take advantage of the properties of the multivariate
Gaussian distribution, then (3) back transform results to original units.

The simplicity of themultivariate Gaussian distribution arises from its compact parametric form:
it is fully parameterized by a mean vector and a variance‐covariance matrix.
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where µ is a column vector of means, µY1
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, . . . , µYn

, Σ is a symmetric variance‐covariance
matrix between all pairs of n random variables or locations and |Σ| is the determinant of Σ. Geo‐
statisticians typically assume the mean and variance are stationary and calculate the covariance
values from the variogram. The decision of stationarity is made for a geologic domain where the
assumption of constant mean, variance, and variogram is reasonable. Perhaps the most important
property of themultivariate Gaussian distribution is that all conditional distributions are Gaussian in
shape and parameterized by mean and variance values arising from the normal or simple cokriging
equations.

So, the transform of continuous property data to a Gaussian distribution is commonplace in
geostatistics. Conditional distributions and multiple realizations are calculated in Gaussian units
and the results are back transformed. The mechanics of the quantile‐to‐quantile normal scores
transform are presented first, then we discuss workflow steps and implementation details.
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2 Quantile‐to‐Quantile Normal Scores Transformation

The standard normal distribution is the target distribution:
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1√
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where fY (y) is the standard normal probability density function. There is no closed form analyti‐
cal solution to the cumulative standard normal distribution, represented by FY (y), but there are
excellent polynomial approximations (Kennedy, 1980).

The quantile‐to‐quantile normal score transformation matches the p‐quantile of the data distri‐
bution to the p‐quantile of the standard normal distribution. Consider the data variable z with the
cumulative distribution function FZ(z). This will be transformed to a y, normal score value with
standard normal the cumulative distribution function FY (y) as follows:

y = F−1
Y (FZ(z)) ∀ z

The nscore program in GSLIB implements this (Deutsch & Journel, 1998). A graphical represen‐
tation of this procedure, shown below, is useful to understand the normal score transformation. The
histograms are shown at the top of the figure. The cumulative distributions, shown at the bottom,
are used for transformation. To transform any core porosity (say 10.0): (1) read the cumulative fre‐
quency corresponding to the porosity, and (2) go to the same cumulative frequency on the standard
normal distribution and read the normal score value (‐0.45). Any porosity value can be transformed
to a normal scores value in this way.

Readers using a web browser may use the following interactive figure which shows the transfor‐
mation from an original distribution to the Gaussian distribution by quantile.

The transformation to a Gaussian distribution is straightforward; however, there are a number
of implementation details to consider including the need for a representative distribution.

3 Representative Source Distribution

A representative distribution, FZ(z), is required for each variable within each chosen stationary
domain. These distributions may be of a residual after removal of a trend model. Any errors in
the source distribution, such as bias, missing ranges, and spikes will be propagated through the
modeling workflow. The representative source distribution must be modeled.

Typically the representative source distribution is a non‐parametric distribution represented as a
list of data values with declustering weights. Cell declustering is reviewed in a lesson. If distribution
smoothing or fitting has been applied then the data values are replaced by values representing the
fitted distribution. The non‐parametric distribution is constructed by sorting the values in ascending
order such that, z1 < z2 < . . . < zn. The weights assigned to each data are carried with the data
in the sorting process. The cumulative probabilities are calculated cpi =

∑i
1 wi and then averaged

with the value below (with cp0 = 0.0) to avoid a systematic bias due to the less than or equal to
definition of the cumulative distribution function.

Modernworkflows integrate uncertainty throughmultiple realizations of the source distribution,
F ℓ
Z(z), ∀ ℓ = 1, . . . , L. Each realization may be the result of a stochastic process such as spatial

bootstrap or expert inferred scenarios.

4 Distribution Despiking

Multiple values that are at the same numerical values are called spikes. These values often occur
at analytical detection limits, such as the minimum or maximum detection values on an assay. The
Gaussian distribution has no spikes and these values must be ordered prior to transformation. This
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Figure 1: Procedure for transforming core porosity values, z, to normal score values, y.

ordering procedure is called despiking. Despiking can be important for data with values at or below
detection limit and are typically represented by a significant fraction of 0.0 values in the dataset.
This is common with geochemical data in exploration and less common in Mining and Petroleum
applications. Completely random despiking introduces artificial variability. Ordering the values by
a moving average of the data avoids this problem, but introduces artificial continuity. A blended
approach is increasingly usedwhere the ties are broken partly based on amoving average and partly
with a random component.

Isolating the spike of zero values into a separate population is recommended if possible. If the
values of the spike are mixed with the other values of the population, then despiking must be con‐
sidered. Random despiking may be acceptable if there are a very small percentage of values at the
spike. The idea of using local moving averages for despiking was proposed by Verly (Verly, 1984).
The idea is to compute averages within local neighborhoods centered at each tied data value. The
data are then ordered or despiked according to the local averages; high local averages rank higher.
As mentioned above, this transformation may introduce too much continuity. A blended approach
where some randomness is added to the moving averages has shown promise.

GeostatisticsLessons.com ©2018 M. Pyrcz and C. Deutsch 3

http://geostatisticslessons.com


5 Back Transformation

A back transformation is applied after a Gaussian‐based algorithm has calculated all conditional
distributions and simulated realizations within the stationary domain. This is the reverse of the
forward transform:

z = F−1
Z (FY (y)) ∀ y

On the previous figure, one could imagine reversing the black arrows, that is, starting at 2 and going
back to 1.

The back transformation is sensitive to the tails of the distribution. The data minimum andmax‐
imum are unlikely to represent the ultimate minimum and maximum of the property for the entire
stationary domain. The practitioner is suggested to choose reasonable minimum and maximum
tail values and rely on a simple extrapolation function. In GSLIB, linear, hyperbolic and power tail
extrapolation models are available (Deutsch & Journel, 1998), but the linear one is simplest.

6 Special Topics

The transformation should take place prior to variogram analysis. The variogram of the Gaussian
transform is required to parameterize the required covariances. The Gaussian transform removes
outliers and smooths other irregularities in the distribution that lead to noisy experimental vari‐
ograms (Pyrcz & Deutsch, 2014).

Gaussian simulationmethodsmay be applied on latent variable(s) as in the case truncated Gaus‐
sian and pluriGaussian simulation. There are additional considerations for modeling univariate and
multivariate Gaussian distributions, formulation of the truncation mask, data coding and transfor‐
mation (Armstrong et al., 2011). Transforming inherently categorical variables to continuous data
values must be done considering spatial correlation and considering non uniqueness of the results.

There are times when fitting the quantile‐to‐quantile transformation results with Hermite poly‐
nomials is convenient, for example, in change of support. The Hermite fit is also used in disjunctive
kriging (Ortiz, Oz, & Deutsch, 2003).
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