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Learning Objectives

• Define the multivariate Gaussian distribution
• Understand essential properties of the multivariate Gaussian distribution
• Review the importance of the multivariate Gaussian distribution to geostatis-
tics

1 Introduction

One of the core challenges in geostatistics is to represent the multi-dimensional dis-
tribution of multiple variables at many locations given the few sample data available.
In most circumstances, less than a billionth of a deposit is extracted for sampling be-
fore development decisions are taken (Pyrcz & Deutsch, 2014). Predicting conditional
distributions of uncertainty at unsampled locations requires amultivariate distribution
between the unsampled location and available sample data within a search distance.
It is not possible to define these multivariate distributions non parametrically due to
the unique configuration of locations for each unsampled location. The parametric
multivariate Gaussian (MG) distribution is widely adopted.

The MG distribution is unique for being mathematically manageable; it is fully pa-
rameterized by a mean vector and a variance-covariance matrix. In geostatistics the
variance-covariance matrix is derived from variogram models, while the mean vector
comes fromanassumptionof stationaritywithin the geological domain (Pyrcz&Deutsch,
2018). The MG distribution permits straightforward inference of conditional distribu-
tions; therefore, many geostatistical algorithms and software take advantage of theMG
distribution to predict the conditional distributions of continuous geological variables
(Deutsch, 2020).

Although geological properties are not naturally Gaussian distributed, the transfor-
mation to a univariate Gaussian distribution is common practice in geostatistics, see
Normal Score Transformation Lesson (Pyrcz & Deutsch, 2018). In the context of geo-
statistics, calculations are performed in a stationary domain A that belongs together
geologically. A multivariate spatial Gaussian distribution is assumed for all locations
in the domain after univariate transformation. The conditional distribution (f ) of a
random variable Z at an unsampled location u conditioned to the available data n is
denoted:

fz(u)|n(z), ∀ u ∈ A

This is defined by multivariate distributions:

fz(u)|n(z) =
fz(u),Z1,...,Zn

(z(u), z1, ..., zn)

fZ1,...,Zn(z1, ..., zn)

The distribution at an unsampled location is the n + 1 variate (data + unsampled
location) distribution divided by the n variate (data) distribution. These relatively high-
dimensional distributions cannot be directly predicted non-parametrically due to a lack
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of repetitive sample configurations. The MG distribution provides a practical approach
for spatially correlated variables.

This lesson will review the definition of the MG distribution, some essential proper-
ties, and its importance and application in geostatistics.

2 Multivariate Gaussian Distribution - Definition

TheMG distribution is a generalization of the univariate Gaussian to higher dimensions
(Johnson, Wichern, et al., 2014). The univariate Gaussian distribution for a random
variable Y with mean µ and variance σ2 is represented by:

f(y) =
1√
2πσ2

e−[(y−µ)/σ]2/2

The MG distribution has its probability density function represented as:

f (y;µ,Σ) =
1(√

2π
)d |Σ|1/2

e
−(y−µ)T Σ−1(y−µ)

2

The exponent of the univariate function represents the squared distance from y to
µ. For the multivariate, y is a vector that represents position in an n dimensional space.

y =


y1
y2
...
yn

 (1)

µ is the mean vector, that is, the expected value in every dimension:

µ =


µ1

µ2

...
µn

 (2)

Σ is the variance (σ2)-covariance (C) matrix for all pairs:

Σ =


σ2

1 C1,2 · · · C1,n

C2,1 σ2
2 · · · C2,n

...
...

. . .
...

Cn,1 Cn,2 · · · σ2
n

 (3)

The variance-covariance matrix Σ must be positive definite. |Σ| is the determinant
of the variance-covariance matrix, and Σ−1 is the inverse.

The generating mechanism of the Gaussian distribution is the central limit theorem.
The central limit theorem states that the distribution of the sum of many independent
samples of a random variable (RV) with finite mean and variance tends to a Gaussian
distribution as the number of samples increases. The characteristic bell shape of the
univariate Gaussian distribution and the characteristic ellipsoidal contours of the bi-
variate distribution are well known, see the figure.

TheMG distribution is fully defined by themean vector and the variance-covariance
matrix. This straightforward parameterization and its properties make the MG distri-
bution the most important distribution in geostatistics (Barnett & Deutsch, 2011).
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Figure 1: Example of bivariate distribution of correlated variables which correlation
ρ = 0.8.

3 Multivariate Gaussian Distribution Properties

There are fourmain properties of theMGdistribution that geostatistical algorithms rely
on.

1. All lower order distributions of theMG distribution, such as conditional
and marginal distributions, are Gaussian.
The figure below shows an example of a bivariate Gaussian distribution of variables Y1

and Y2, and their respective marginal distribution that are also Gaussian. The figure
also illustrates conditional distributions following a Gaussian shape.

2. All conditional expectations are linear function of the data.
This is also illustrated on the next figure. Linear regression is theoretically correct in
the presence of MG distributed variables. Consider standard Gaussian variables that
come from the normal score transform (detailed in an accompanying Lesson) or stan-
dardizing a non-standard Gaussian variable:

Y =
Z − µ

σ

The mean (µ) and standard deviation (σ) to y are µ = 0 and σ = 1.
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Figure 2: Example of bivariate Gaussian distribution showing Y1 and Y2 marginal distri-
butions. The figure also illustrates the normality of the conditional distributions.

Consider a bivariate case with standardized random variables Y1 and Y2, the condi-
tional expectation of Y2 given Y1 = y1 is:

E(Y2|Y1 = y1) = ρy1

that is, a linear function of y1.

3. All conditional variances are data value independent.
Considering standard values again, the conditional variance is given by

var(Y2|Y1 = y1) = 1− ρ2

that is, the conditional variance does not depend on the conditioning value y1.

4. The conditional distributions are defined by the normal equations.
Consider all data values and the unsampled locations following anMG distribution. Let
y0 be the variable to be predicted and y1, ..., yn be condtioning data. They are indexed
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Figure 3: Figure representing conditional variances being independent of the data. The
figure also shows that conditional expectations are linear function of the data.

by specific locations. The distribution fy0|n(y) is Gaussian with a conditional mean that
is a linear function of the conditioning data:

µc =

n∑
α=1

λαyα

and a conditional variance that does not depend on the data values:

σ2
c = σ2 −

n∑
α=1

λαCα0

where allC (covariance) values are inferred from the variogramof the normal scores
(C = 1− γ). The linear weights (λα, α = 1, . . . , n) come from the normal equations:

n∑
β=1

λβCαβ = Cα0 , α = 1, . . . , n

clarifying that the normal equations define the conditional distributions. In geo-
statistics, the normal equations are known as Simple Kriging (SK).
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4 Geostatistics Application

Due to the properties described above, the MG distribution is extensively used in geo-
statistical algorithms. At the time of this Lesson, there is no other known distribution
that can be used for inference in a high dimensional multilocation and multivariate
situation. A commonly encountered case in geostatistics considers one variable and
multiple locations. This is the multiGaussian kriging approach (PostMG) (Verly, 1983)
summarized as:

1. A global representative distribution is inferred for the deemed stationary domain
using declustering if necessary. Data are transformed to normal scores and the
transformation table containing the original values and corresponding normal
scores is kept.

2. The variogram of the normal score data is calculated, interpreted, and modeled.
The model provides the covariances necessary to fully parameterize the MG dis-
tribution for the domain.

3. The normal equations (simple kriging) is performed at each unsampled location
to calculate the local mean and variance. These local mean and variance values
define the local conditional Gaussian distributions.

4. A reasonably large number L, e.g. L = 200, of quantiles are defined to back trans-
form each local distribution to original values:

pl =
l

L+ 1
, l = 1, . . . , L

zl(u) = F−1
(
G
(
G−1(pl) · σc(u) +mc(u)

))
, l = 1, . . . L, ∀ u

where G−1 is the inverse of the standard normal CDF. The local conditional mean
and standard deviation values are denoted mc(u) and σc(u). All conditional distribu-
tions are back transformed. The expected value in original units and summary mea-
sures of local uncertainty could be inferred including the probability of exceeding a
critical threshold (Pinto, 2020). Note that the distributions established by the MG krig-
ing workflow are at the scale of the data and simulation is required to consider block
or large scale uncertainty.

MultiGaussian Kriging Example
A brief example using the ConklinWell2D porosity data demonstrates this workflow. A
location map and directional variograms are shown below.

The conditional mean and variance in Gaussian units are calculated by simple krig-
ing (top row). The PostMG back transform is executed and the conditional mean and
variance in original units is obtained and shown on the second row. Note how the
back transformed variance depends on the data values; in particular, note the band of
high uncertainty separating the low and high values. The conditional P10 give us 90%
chance of being higher than a specific value; where this value is high we are surely high.
The conditional P90 indicates 10% chance of being higher (90% chance of being lower);
where this value is low we are surely low.

As mentioned above, the uncertainty of blocks or at any larger scale requires sim-
ulation (Ortiz, Leuangthong, & Deutsch, 2004). Sequential Gaussian simulation is one
implementation of many that could be considered.
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Figure 4: Location map for ConklinWell2D porosity data.

Figure 5: The North/South variogram and the East/West variogram.
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Figure 6: Figure representing the results of the PostMG algorithm. The first row rep-
resents the conditional mean and variance in Gaussian units. The second row is the
result of conditional mean and variance in original units after the PostMG algorithm.
The conditional variance in original units gives local uncertainty. The third row shows
the P10 and P90. In P10, there is a 90% chance of values being higher. Whereas in P90,
there is a 10% chance of being higher
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Sequential Gaussian Simulation
Simulated realizations are used when we require measures of uncertainty that involve
multiple locations. Simulation generates realizations that reproduce the data, the input
histogram and the input variogramwithin statistical fluctuations (Pinto, 2020). Sequen-
tial Gaussian Simulation (SGS) depends on a recursive application of the definition of
a conditional distribution to define the joint distribution of N RVs. N represents the
number of simulation locations and is usually large, for example, millions of locations
are considered to discretize a geological site. SGS follows:

1. A random path is defined, each node is visited once
2. Search for nearby conditioning data and previously simulated values and solve

the normal equations to calculate conditional mean and variance for the location
3. Draw a value simulated from the distribution and add it to conditioning data
4. Move to next node

Multiple realizations are simulated with different random numbers that are used to
define the random path and the simulated values.

SGS Example
The first 4 of 200 SGS realizations are shown in the following figure. The average of all
200 realizations of SGS is shown in the figure below. The average reproduces the results
of direct back transform shown above. The MG estimation framework provides local
uncertainty, but it does not give a measure of joint spatial uncertainty of the variable at
multiple locations. Simulation provides access to multiple location spatial uncertainty.

Multiple Variables
In theory, the extension to multiple variables is straightforward. A positive definite
model of covariance between all locations and all variables is constructed and calcula-
tions proceed as described above. The positive definite covariance model is through
the linearmodel of coregionalization (LMC). The LMC allows simple cokriging to be used
in place of simple kriging and conditional distributions to be calculated in presence of
multiple variables. Fitting an LMC from sparse data, however, is considered difficult in
practice and alternatives are considered. One alternative is to assume some form of in-
trinsicmodel where the shapes of the cross variogramor secondary variable variogram
are assumed the same as the primary variograms.

The most common alternative to the LMC is to apply a decorrelation transform,
model the transformed variables independently, then back transform to restore the
relationships between the variables. An early transform was the stepwise conditional
transform (SCT) (Leuangthong, 2003) that removes non-Gaussian features like non-
linearity, heteroscedasticity and compositional constraints. More recent transforms
are based on principal component analysis (PCA) (see PCA Lesson (Barnett, 2017a));
minimum-maximum autocorrelation factors (MAF), (see MAF Lesson (Barnett, 2017c));
and the projection pursuit multivariate transform (PPMT) (see PPMT Lesson (Barnett,
2017b)). These transformations enable the data to conform to the MG distribution and
permit independent prediction or simulation of the transformed factors.

The PPMT transformation is widely used in geostatistics as it can transform multi-
variate data with complex behaviour to be MG and uncorrelated. Both simulation and
estimation are simplified as transformed variables can be considered one at a time.
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Figure 7: Figure showing the first 4 of 200 realizations of SGS.

Figure 8: Figure showing average of all 200 realizations of SGS.
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The PPMT back transformation restores the complexity of the original data. Local un-
certainty and multilocation uncertainty can be assessed if simulation is routinely per-
formed (Pinto, 2020).

Categorical Variables
Categorical variables are often modeled first to improve the stationary domains within
which continuous variables are modeled (Pyrcz & Deutsch, 2014). There aremany tech-
niques for categorical variable modeling, but variants of truncated Gaussian simula-
tion are widely used (Armstrong et al., 2011; Matheron et al., 1987). The hierarchical
truncated pluriGaussian (HTPG) considers truncating underlying Gaussian latent vari-
ables by a tree structure adapted to the chronology and relationships between the cate-
gories (Silva &Deutsch, 2018). The latent variables can bemodeled throughwell known
methods for simulation of Gaussian random functions, like SGS. TheMGprediction and
simulation methods are well understood and form the core of modern geostatistical
modeling.

5 Discussion

The MG distribution is unique in its mathematical tractability and straightforward im-
plementation. Alternatives such as the indicator formalism, multiple point statistics,
and various machine learning algorithms have their place, but MG-based techniques
are widely used. MG methods permit the direct prediction of uncertainty, simulation
for the transfer of uncertainty andmanagement of variability, consideration ofmultiple
variables and the simulation of categorical variables.
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