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Learning Objectives

+ Understand the principles and place of Multiple Indicator Kriging (MIK).
« Comprehend the steps and decisions to implement MIK.
 Appreciate limitations and post processing of MIK-derived distributions.

1 Introduction

The key objectives of multiple indicator kriging are to (1) manage highly variable natural
phenomena without cutting high values or nonlinear transformation, and (2) estimate
the local distribution at each unsampled location to provide risk-qualified estimates
(Journel, 1983). The aim is to model complex mineralization with non-Gaussian struc-
ture, including asymmetric spatial continuity of high and low values.

The original data Z(u) are considered in binary transformations within a chosen
stationary domain A, based on defined Z;, thresholds. Often between K =7 and K =
15 thresholds are selected. This discretizes the range of variability of the continuous
variable Z. Consider the random variable Z(u) at a location (u) within a stationary
domain A:

1, ifZ(u) <z

; =1,....K, ued
0, otherwise

F(us zp) = I(U; 21,) = {
The prior global distribution at K thresholds can be estimated by a weighted average
of indicator data:

F*(z) = Y wai(Uasz), k=1,...,K
a=1

where w, are declustering weights applied to the n indicator data at each threshold
i(Uq; 2x). Thereis no resolution preserved between thresholds as the only points of the
probability distribution used are at the indicator thresholds.

Some important prerequisites to consider before applying MIK are: (1) the domain
should be as stationary as possible with manageable transitions to other domains, (2)
outlier values must be managed as usual although MIKis more resistant to outliers than
most methods, (3) the data should be composited to a reasonable length to remove ex-
cessive high frequency variations while preserving important short scale variability, and
(4) appropriate declustering weights should be computed for a representative global
distribution.
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Figure 1: Declustered global CDF of copper deposit and selected thresholds.

2 Global Histogram and Thresholds

Choosing thresholds is the first step of multiple indicator kriging. The number of thresh-
olds is normally chosen between 7 to 15; considering too many may induce more or-
der relation problems and too few thresholds would result in low resolution of the
predicted distributions. Some criteria for choosing the thresholds include:

1. Commonly start with nine thresholds defining deciles of the global distribution

2. Move the thresholds to correspond to interesting inflection points on the cumu-
lative distribution function

3. Remove some low thresholds depending on the cutoff grade and add some high
thresholds to define approximately equal quantity of metal in the upper classes

4. Move the thresholds so one matches the specified cutoff grade

5. Intervals should have enough data for a robust estimation; perhaps a minimum
of 4 to 5% of the data.

The variogram for the indicator data should change in a reasonable way from one
threshold to the next. Additional thresholds may be needed if the indicator variogram
changes abruptly. Some thresholds could be dropped if the variograms do not change
and the resolution is not required.
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The figure shows a declustered global CDF from a copper deposit. The table below
summarizes the thresholds and resulting classes. Note that inflections are mostly re-
produced, there is similar metal content in the classes, the economic cutoff grade is
the second cutoff and there are a reasonable number of data in each class.

Table 1: Summary of threshold selection.

Classes Grade From GradeTo CDF Probability No.Samples Metal Quantity

I 0.01 0.15 0.37 37.0% 184 12.7%
Il 0.15 0.25 0.56 18.7% 93 14.3%
1 0.25 0.31 0.70 14.3% 71 15.8%
v 0.31 0.38 0.80 10.5% 52 14.2%
\Y 0.38 0.44 0.88 7.8% 39 12.6%
\ 0.44 0.53 0.95 7.0% 35 13.6%
Vil 0.53 7.74 1.00 4.6% 23 16.7%

3 Indicator Variograms

It is necessary to model directional variograms for the indicator data at each threshold.
These variograms are often well behaved as the data are only Os and 1s. Nevertheless,
carefully choosing orientations and variogram parameters is still necessary to acquire
stable variograms. The indicator variograms should be standardized to make it easier
to analyze, compare and model the indicator variograms.

Any licit variogram structure that rises linearly at the origin such as exponential
and spherical can be used for modeling the variograms. It is convenient to use the
same type for all indicator variograms to ensure consistent changes. The indicator
variograms, after all, relate to the same underlying continuous variable. Transitions
between the indicator variograms are expected to be smooth in terms of variance,
anisotropy, and ranges. To check these transitions from one indicator to the next, the
ranges, nugget effects and anisotropy can be plotted versus the threshold number.
There should be no abrupt discontinuity between variograms of consecutive thresh-
olds. The figure below is an h-scatterplot indicating the contribution to two indicator
variograms at thresholds z1 and z2. Note that they share much of the same structure.
Changing from z1 to z2 amounts to a loss of some points and a gain of some others;
therefore, the indicator variogram for nearby thresholds cannot be too different.

It is also important to note that there might be strong destructuration on higher
thresholds variograms and weaker on lower ones. The figure below shows some dis-
turbances on nugget effect from lower quantiles and intense range decrease for higher
quantiles.

4 Indicator Kriging

There are some recommendations in the Lesson on Introduction to Choosing a Kriging
Plan. Itis advisable to use the same search plan with a reasonably large search neigh-
borhood and number of samples. Changing the search parameters for the thresholds
could create artifacts and unstable estimates of the probabilities. The local distribution
for each u location is estimated at the K thresholds. Ordinary kriging is almost always
used:
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Figure 2: h-scatterplot of Z(u) vs Z(u + h) showing the contribution to two different
indicator variograms.
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Figure 3: Indicator variograms destructuration.
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Figure 4: Order relation deviation and the applied correction. The points are the MIK
estimates and the corrected CDF is obtained by averaging upward and downward cor-
rections (Deutsch & Journel, 1998).

F*(u;z;) =" (u; z) = Z AU; z)i(Ug; 2x), k=1,...,K, ueA
a=1
The ordinary kriging weights A change with the indicator variograms for each thresh-
old.

5 Order Relation Correction

As the thresholds are estimated separately, the estimated conditional CDF values may
not satisfy the order relations for a valid CDF (Journel, 1983). The source of these prob-
lems is related to poorly modeled variograms, inconsistent kriging plans, negative krig-
ing weights and a lack of data for some thresholds. One reasonable method for cor-
rection is to use the algorithm for averaging the upward and downward corrections
(Deutsch & Journel, 1998).

After the order relation correction, it is necessary to interpolate between the esti-
mated CDF values and to extrapolate beyond the first and last thresholds to obtain a
complete distribution. Linear, power and hyperbolic models are sometimes used for
this step, but in practice it is better to scale the global declustered distribution to fit
between the gaps and in the tails. The MIK estimates provide local CDF values at the
chosen thresholds for each unsampled location (see blue circles on figure below). The
complete local distribution for all p and Z values is inferred from these MIK estimates
and the global distribution. The shape of the global distribution for each interval is pre-
served, but scaled to the correct MIK probability estimates and the specified minimum
and maximum (see the red dashed line on figure below).
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Figure 5: Example of filling the distribution with rescaled points from the global CDF.

6 Recoverable Resources

After filling each local distribution, it is possible to obtain any desired summary statistic.
These include the mean, variance, other measures of uncertainty, and the probability to
be above cutoff. For calculating these statistics, the procedure is to extract L quantiles
(typically 200 in practice) from each filled in non-parametric distribution:

l

CL+1

So, ateach u each location, there are L equally spaced quantiles. For block statistics,
it is necessary to perform volume support correction from point to block scale. It is
common to use the simpler affine or indirect lognormal corrections because there are
many distributions to correct. The discrete Gaussian model would be appropriate, but
more computationally demanding. The global change of support correction could be
applied as a short cut, but the change of support is known to vary locally.

The expected value e-type mean, will be very smooth, but it is a useful summary at
each location:

z(w;l), B =1 L, ucA

geeey

L
m(u) = %Zz(u;l), ue4
=1

The variance:

L
2 . 2
o*(u) = ¢ l;(z(u, ) —m(u))’, ueA

The probability of a block being above some cutoff grade could also be calculated as
the number of values above the cutoff grade divided by the total number of values (L).
The grade of the ore is calculated as the average grade of those values above cutoff,

The probability of each block being ore and the grade of ore can be combined for a
resource estimate. To estimate the total ore tonnage in a region, it is necessary to sum
the product of probability of being ore and the tonnage of the block. The ore grade is
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the tonnage weighted average of the ore grade of each block. The waste tonnage is the
total tonnage minus the ore tonnage.

7 Considerations

Multiple Indicator Kriging (MIK) is a non-parametric estimation of uncertainty at point
scale that makes no explicit assumption about the distribution. This method could be
used for complex mineralization, with mixed grade populations that cannot be easily
separated in different domains. Other options for probabilistic estimation are the Multi
Gaussian methods including Multi-Gaussian Kriging, and Uniform Conditioning.

The block uncertainty provided by MIK could be run through a localization proce-
dure (LIK - Localised Indicator Kriging), to provide a unique value per block that repro-
duces the block distribution in larger panels (Hardtke, Allen, & Douglas, 2011).

Simulation has many benefits related to joint uncertainty over large volumes and
the ability to work with multiple variables. However, MIK/LIK is easy to apply and suit-
able to situations with complex geological controls on grades.
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