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Learning Objectives

• Appreciate high dimensional distance calculations with geological data
• Understand multidimensional scaling (MDS) within the framework of multi-
variate geostatistics (source code available).

• Interpret results from MDS to help understand multivariate data

1 Introduction

Multidimensional scaling (MDS) (Kruskal, 1964; Shepard, 1962; Torgerson, 1952) is a
method used in data sciences to visualize and compare similarities & dissimilarities of
high dimensional data. Its use in geostatistics helps visually assess and understand
multivariate data in a lower dimension. By reducing the dimensionality of the data one
can observe patterns, gradients, and clusters that may be helpful in exploratory data
analysis. MDS does this by projecting the multivariate distances between entities to a
best-fit configuration in lower dimensions that we can see.

This lesson will summarize the basic theory behind the technique including data
preparation. Interpretation of the results for multiple examples will hint at various
applications. A Jupyter Python notebook example is provided.

2 Theory

Multidimensional scaling is a family of algorithms aimed at best fitting a configuration
of multivariate data in a lower dimensional space (Izenman, 2008). If the magnitude of
the pairwise distances in original units are used, the algorithm is metric-MDS (mMDS),
also known as Principal Coordinate Analysis. However, if magnitudes are unknown, it
is possible for similarities from a higher dimension to be rank ordered and projected
to a lower dimension which is known as non-metric MDS (nMDS). Dissimilarity and dis-
tance are interchangeably used to describe the difference between entities, whether a
physical distance or some quantification of relatedness.

Suppose there are n-entities (eg. drillholes) and n(n− 1)/2 pairs with each pair hav-
ing a measure of distance. The distance is a function of many variables for each en-
tity (eg. mineralization, alteration, lithology, location, grade, length, year drilled). MDS
takes the pairwise distances between the entities and finds best-fit representations of
the points in all lower dimensional spaces. We commonly visualize the 2 or 3-D repre-
sentation.
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3 Data Preparation

The entities and variables are selected first. The variables are chosen to reflect the
goals of the study. The data must have no missing values.

Variables are often standardized for consistent distance calculation. Consider n-
entities, i = 1, ..., n and K-variables, k = 1, ...,K. A simple standardization is achieved
by:

xk,i =
zk,i − µk

σk

where zk,i denotes the k-th variable of the i-th data in original units, xk,i is the stan-
dardized data, µk and σ2

k are the mean and variance of the k = 1, ...,K variables. Once
standardized, each variable has a mean of zero and a standard deviation of one.

4 Distance matrix calculation

The distance between the different entities can be calculated by the Euclidean distance,
correlation coefficients, or another method. The Euclidean distance is common:

dij =

√√√√ K∑
k=1

(xk,i − xk,j)2 for i, j = 1, ..., n

where dij is the Euclidean distance between entity-i and entity-j for theK variables
being considered.

Distances can also be calculated using correlation coefficients between variables.
In this case, the variables are the entities (i, j) and the correlation coefficients (ρij ) be-
tween all variables form a similarity matrix. The distance or dissimilarity between the
i-th and j-th entities (dij ) is calculated by:

dij = 1− ρij for i, j = 1, ..., n

The distance matrix is essential for MDS.

5 Embedding

An optimization algorithm is used to embed the entities in a lower dimension space
with pairwise distances as close as possible to the input distance matrix.

A simple example of 4-entities with 3-variables is shown below:
The distances between entities in the lower dimensions are not preserved exactly.

MDS finds the best-fit configuration. The distortion in distances between the lower
dimension and higher order space is called stress, which is minimized by the MDS im-
plementation.

The axes (Y 1, Y 2) in lower dimensions are ordered from largest range of variability
to least (Cox & Cox, 2001).
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Figure 1: Left: Original 3-dimensional space with 4 points defined by 3 variables
(X1,X2,X3) and input distance matrix. Right: Embedding using MDS to 2 dimensions
(Y1,Y2) with resulting distance matrix showing a slight distortion in the distances
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Figure 2: Correlation matrix between elemental data taken from the Northwest Terri-
tory’s Geological Survey

6 Examples

Northwest Territory Data
A set of data assembled by the Northwest Territories Geological Survey consists of
n=8503 surface samples (Falck et al., 2012). The 36 elemental variables are chosen
for exploratory data analysis. The correlation matrix is shown below.

The 36 dimensionalmultivariate space of the variables cannot be visualized. The dis-
tances dij = 1−ρij are embedded using scikit-learn’s MDS implementation (Pedregosa
et al., 2011) and shown below.

Some interpretations based on this plot include the following. Calcium (Ca) and
Magnesium (Mg) appear together as outliers in the upper right of the plot. They are
largely negatively correlated with the other elements from the correlation matrix with
the exception of Strontium (Sr), which is also an alkaline earth metal and appears close
in theMDS plot. The transitionmetals Mn, Co, Cu, Fe, Ni, Cr, Zn, Cd, Ag, V, Mo appear as
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Figure 3: Multidimensional scaling of multivariate elemental data

a gradient on the left hand side of the plot, while Hf and Au, also transition metals, are
distal to this gradient. The strongest correlation from thematrix is 0.87 between Cerium
(Ce) and Thorium (Th). Lead (Pb) appears to be largely uncorrelated with all elements
and thus plots far away on the Y 3 axis. The Y 1 axis shows the most variability while Y 2
is intermediary, and Y 3 exhibits the least.
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Figure 4: Correlation matrix of mining variables from company disclosures

Mining Economic Data
As another example consider economic, stock, and mine production data from com-
pany disclosures. These examples are strictly for educational purposes and should not
bemisconstrued as financial or professional advice. Medium sized gold producing com-
panies (n=14) are compared in order to understand the relationship between different
measures. There are 12 variables reduced to 3-dimensions using MDS. A correlation
matrix of the variables was calculated and MDS used distances given by dij = 1− ρij :

Distinct clusters and gradients can be observed. Between Gold production, Market
Cap, Earnings, and Revenue, a gradient and cluster can be noted. Cash Cost per ounce,
ameasure of the operational cost tomine an ounce of gold, and All-In-Sustaining-Costs
(AISC), reflecting the full cost, are closely related whilst Shares outstanding and Grade
appear to be outliers.

Correlation based distance has been used in the two examples; however, Euclidean
distance can be used to calculate distance. As an example consider the 14 medium
sized gold producers as the entities with the aforementioned 12 variables. The distance
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Figure 5: Multidimensional scaling of mining variables from company disclosures

matrix is generated by standardizing the 12-variables and calculating the Euclidean dis-
tance to be input directly to MDS.

The companies are spread rather uniformly over the principle axes (Y 1, Y 2, Y 3) with
the exception of Kirkland Lake (KL) and to an extent Pretium Resources (PVG). Kirkland
Lake is an outlier because of its high-grade (1.82σ), high ounce production (1.72σ), at
relatively low cost (AISC=0.51 σ).
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Figure 6: Multidimensional scaling of 14Medium sized gold producing companies using
Euclidean distance
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Figure 7: MDS of multiple simulated realizations from Barros & Deutsch 2017. Similar
realizations plot near (on the left); whereas, dissimilar realizations plot far (on the right)

Some Other Applications
Geostatistical realizations represent possible outcomes of the uncertainty model (Bar-
ros &Deutsch, 2017). The realizations (n=100-200) are considered as an ensemble. Bar-
ros & Deutsch 2017 proposed the use of MDS to help optimally order realizations for
visual analysis and presentation. An algorithm was developed to sequentially display
realizations as a function of their inter-item distances.

The distances are used to find shortest path route through the realizations. The
result is a smooth optimal ordering of realizations to help the analyst better visualize
and interpret the realizations and uncertainty. A video playlist of 2 case studies con-
tained within Barros & Deutsch 2017 show the effect of optimal ordering in the visual
assessment of uncertainty pertaining to simulated realizations.

Anisotropy in geostatistics outlines the directional dependence of the continuity of
geological variables (Boisvert, 2010). Locally varying anisotropy (LVA) occurs naturally
in geological systems. For example, folding and faulting of sedimentary beds can lead
to a change in the principal directions of continuity. Considering LVA in the distance
calculations may result in covariance matrices that are not positive definite. The LVA-
based distances could be embedded in a Euclidean space that closely honors the dis-
tances in the original LVA-space and ensures positive definiteness in kriging calculations
(Boisvert, 2010).

Modeling of geological variables is more complex and of a higher dimension than
the target response. An output can be a simple binary response; however, there are
many locations and multiple variables creating a high dimension. Embedding into a
lower dimension metric space increases the efficacy and efficiency of interpretation
and relating the response to geological characteristics (Caers, Park, & Scheidt, 2010).
The connectivity distance between realizations could be considered.
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7 Summary

Multidimensional scaling is a practical tool to help understand multivariate data. The
embedding of high dimension entities in lower dimensions allows for convenient vi-
sualization and other calculations. We could identify clusters, outliers, and gradients.
The assessment of these features provides a better understanding of the multivariate
system.
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