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Learning Objectives

• Recognize the importance of accounting for local variations in anisotropy to
improve variogram based geostatistical modeling

• Review how variogram basedmodelingmethods aremodified to incorporate
LVA

• Understand how different data sources can be used for the construction of
the LVA field

• Appreciate the difference between LVA and ‘dynamic anisotropy’

1 Introduction

All modeling techniques rely on a decision of stationarity (Dias & Deutsch, 2022). In
most geostatistical algorithms, this is (1) first order stationarity: the global mean is con-
stant in the modeling domain and (2) second order stationarity: the spatial continuity
of the random function is unchanged under translation. This lesson explores model-
ing geological domains where second order stationarity is inappropriate and spatial
continuity/anisotropy varies locally, termed locally varying anisotropy (LVA), Figure 1.
Note that when only considering the direction of anisotropy, this is sometimes called
‘dynamic anisotropy’ but the term LVA is general and encompasses dynamic anisotropy,
so the term LVA is preferred.

Spatial properties of earth science data vary depending on the direction being con-
sidered; this is known as anisotropy. Anisotropy arises due to a variety of factors includ-
ing preferential alignment of geological structures and differences in the properties of
different geological processes. This can pose a challenge to many geostatistical tech-
niques when the magnitude or direction of that anisotropy varies within a modeling
domain. Accounting for anisotropy in numerical models requires careful consideration
of the direction andmagnitude of anisotropy, and requires the use of specializedmeth-
ods that account for LVA when domains are non�stationary.

Most geostatistical workflows can be modified to consider a non�stationary frame-
work and this lesson focuses on Kriging and Sequential Gaussian Simulation (SGS).
Non�stationary modeling considers a trend in the mean or a trend in the covariance
function (Honarkhah & Caers, 2012); thus, LVA is just a ‘trend in the variogram’ and is
characterized by a location�dependent covariance structure (Ejigu, Wencheko, Moraga,
&Giorgi, 2020), demonstrated in Figure 1. LVA typically improves estimation by account-
ing for local features in a modeling domain and generates models that are more geo-
logically realistic, but requires additional inputs to define the locally varying covariance
structure.
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Figure 1: Example of LVA in an alternating sequence of anticlines and synclines. Each
line represents the local direction of anisotropy.

Figure 2: The example shown to the left depicts an iron ore deposit in Australia.
Source: https://www.ga.gov.au/education/classroom-resources/minerals-energy/
australian-mineral-facts/iron. The example shown to the right depicts a carbon-
ate sediments deposit in Greece. Source: https://en.geol.uoa.gr/el/department/
gallery/.

2 What is LVA?

A single stationary variogram with a constant strike/dip/plunge and constant ranges in
each direction cannot represent local variations in continuity typical ofmineral deposits.
LVA parameterizes the spatial continuity of a domain using a vector field (Figure 2) that
represents the covariance function (i.e. variogram) in a domain. Models generated us-
ing LVA usually exhibit greater geological realism, meaning they include characteristics
that are more representative of natural geological systems.

The LVA field is a vector field parameterized by six parameters (Lillah & Boisvert,
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2015). A detailed discussion anddescription of the dynamic representationof anisotropy
is provided in Lesson (Deutsch, 2015). The six parameters that define anisotropy are:
the strike (α) is the angle measured from the geographic north to the horizontal plane;
the dip (β) is the largest acute anglemeasured between the horizontal and the bedding
plane; the plunge (θ) is the angle between the horizontal and the linear structure; the
major; minor (also referred to as semi) and vertical (also referred to as minor) direc-
tions of continuity. An ‘LVA field’ is the specification of these 6 values for every location
in a model. r1 is the ratio between ranges along the minor and major directions of
continuity; r2 is the ratio between the ranges along the vertical and major directions of
continuity. The LVA field can be defined using more than one variogram structure by
specifying the ranges and angles for each structure when software allows. The LVA field
is used to calculate the covariance between locations, just as the variogram is used in
traditional modeling workflows.

3 Spatial Modelling Methods with LVA

The options for integrating LVA into geostatistical modeling are reviewed. The simplest
method is to consider stationary modeling/estimation domains for anisotropy varia-
tions having hard boundaries (Boisvert, 2010). The second method considers a local
reorientation of the variogram and has been popular since the 1990s; this remains a
good methodology when the LVA in a domain varies at a scale larger than the sample
spacing (David F. Machuca-Mory & Deutsch, 2007). When there is significant variation
in anisotropy at the sample spacing scale, the thirdworkflow involving calculating short-
est path distances (SPD) is appropriate (Boisvert &Deutsch, 2011). Note that all of these
methods are appropriate for nearly any variogram based geostatistical technique.

Hard Boundary Between Domains
This method is simple, when the LVA changes abruptly and a hard boundary can be
drawn between domains with constant anisotropy (i.e. Domains A and B in Figure 4)
multiple estimation domains should be considered (Boisvert, 2010). This is the pre-
ferred workflow when a hard boundary delineates a large volume of the domain of in-
terest and there is sufficient sampling in all domains to infer the necessary parameters
required for modeling (i.e., histogram, variogram, categories, etc). Referring to Figure
3 as ‘locally varying’ is a stretch, but the method is included here for completeness.

Local Reorientation of the Variogram
When considering LVA in geostatistical modeling, it is essential to address the relative
scale of anisotropy changes compared to sample spacing. This concept is particularly
pertinent when discussing the local reorientation of the variogram. In this methodol-
ogy, the covariance function at the location being estimated or simulated is used and
applied to the local estimation neighborhood (Kupfersberger, Deutsch, & Journel, 1998;
David F. Machuca-Mory & Deutsch, 2007). This local estimation neighborhood or the
‘search’ radii is typical in most software implementations. The covariance between all
samples and previously simulated nodes in this search volume is required. The local
variogram reorientation methodology uses the anisotropy at the estimation location
and assumes it is constant in the local search neighborhood. Sufficient sampling in all
domains is required to infer the necessary parameters for modeling (i.e., histogram,
variogram, categories, etc). Once these required covariances are calculated, Kriging or
simulation proceeds as in traditional workflows. This is appropriate for domains where
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Figure 3: Hard boundary between domains. Left: LVA field in Domain A and Domain
B respectively. The variogram range values are and 50m in the 45° direction (Domain
A) and 75m in the 92° direction (Domain B) with an anisotropy ratio of 10:1. Right:
Ordinary kriging is used to get the estimates using the continuity information obtained
from the constant variograms for Domain A and Domain B.

Figure 4: LVA in a syncline. Left & Center: Local search neighborhood (blue circle) show-
ing the orientation of the covariance function (red lines) applied to the local search
neighborhood when estimating. Right: Ordinary kriging is used to get the estimates by
incorporating the continuity information from the reoriented covariance function.

continuity varies smoothly and at a scale larger than the data spacing. However, the
effectiveness of this technique can be compromised if the samples are spaced widely
relative to the scale of anisotropy changes. In such cases, the assumption of constant
anisotropy within the local search neighborhood may not hold, leading to potential
inaccuracies in the model predictions (David F. Machuca-Mory, Rees, & Leuangthong,
2015).
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Figure 5: Estimates obtained using SPDs. Left: The graph theory entails that the short-
est distance between A and B is along the curved path. Right: The SPDs between every
two points in the domain is used in the computation of the estimates.

Shortest Path Distance for LVA
Locally reorienting the variogram cannot consider anisotropy that varies within the lo-
cal search neighborhood so the covariance between locations must be modified to
consider LVA (Figure 5). One popular workflow is to consider the shortest path distance
(SPD) between locations and use this to calculate the covariance accounting for the ‘cor-
rect’ relationship between points(Boisvert & Deutsch, 2011). Consider two locations A
and B in Figure 6. It is clear that these locations are not related by the straight�line
Euclidean path A�B; rather, during deposition A and B would have been parallel and
in their current orientation they would be related by the curved path shown. Interest-
ingly, when the underlying LVA field is used to calculate the anisotropic distance, the
curved path is shorter than the straight�line path because of the discounting of dis-
tance when following ‘along’ the direction of continuity. When calculated, the curved
SPD is 27% shorter than the straight�line path, meaning that the use of the Euclidean
straight�line distance underestimates how correlated A and B are. The detailed calcu-
lation for SPD can be found in Boisvert & Deutsch (2011).

Different implementations of this workflow calculate this SPD in different ways. Us-
ing a graph and the Dijkstra algorithm is one method (Boisvert, Manchuk, & Deutsch,
2009). The path is considered to be piecewise linear segments that make up a graph
and distances of each segment are calculated with the local anisotropy specification
from the LVA field. Any shortest path algorithm could be applied. Additional details
can be found in (Bogrash, Sacchi, & Boisvert, 2023; Boisvert & Deutsch, 2011; Davis &
Curriero, 2019) but the actual calculation of the SPD is usually handled well by software.

One important detail in these SPD workflows is that non�Euclidean distances can-
not be directly used in kriging equations, as the resulting system of equations are not
guaranteed to be solvable. Two popular fixes are (1) adjust the resulting covariance
matrix until it is positive definite (Davis & Curriero, 2019) and (2) use multidimensional
scaling (MDS) to embed the samples in a high dimensional space in which Euclidean
distances are appropriate (Boisvert & Deutsch, 2011) and model an omni-directional
variogram for covariance calculation between samples. To date, there are no compu-
tationally efficient workflows for option 1 because it requires the calculation of many
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Figure 6: Diagrammatic illustration of a Cu-Au porphyry deposit. Modified after (Sillitoe,
2010)

more SPD’s than option 2; thus option 1 is limited to very small 2D problems. As SPD
algorithms and computational speed continues to improve, option 1 may become vi-
able for larger grids. The use of MDS in option 2 reduces the number of SPD’s required
and is computationally efficient for large 3D grids with millions of cells; however, it in-
troduces some bias to the distance calculations, especially for short distances. Details
of the landmark MDS algorithm typically employed in these workflows can be found in
(Boisvert & Deutsch, 2011) but this requires very few user inputs and is handled well
by software.

4 Example

A synthetic Cu�Au porphyry deposit (Figure 6) is used to highlight the importance of
LVA in reproducing nonlinear features in geostatistical models. The LVA field for the
given deposit (Figure 7) varies between the samples so SPD should be considered, but
all methods are applied for comparison. It is difficult to subdomain this example into
stationary domains, considering four quadrants is not sufficient (Figure 8). Some mod-
els built for similar deposits have been successful with more divisions, think of further
dividing this domain into pizza slices, but that requires dense drilling so that there are
sufficient samples informing the histogram and variogram for each domain. The fea-
tures of the porphyry are best replicated with the SPD method (Figure 8). Considering
local variogram reorientation (Figure 7) performs well in areas with dense drilling but
poorly in the Southwestern area of the domain where data is sparse. As discussed, the
SPD method is preferred when the LVA field varies between samples.

5 Building LVA Field

Building the LVA field is the most difficult part of modeling with LVA and could be the
topic of a dedicated lesson, but three possible methods are briefly presented here. Se-
lection of the LVA field generationmethod dependsmostly on the type of data available.
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Figure 7: LVA field for a porphyry deposit. Top Left: The LVA field along A�A’
cross�section in Figure 6. Top Right: Estimates obtained by domaining into four quad-
rants with a constant variogram for each. Bottom Left: Estimates obtained using locally
reoriented variograms at each point based on the LVA field. Bottom Right: Estimates
obtained using the SPDs between points in the LVA field.

One method is presented for generation from surfaces (e.g. sedimentary deposits),
point data (e.g. dipmeter data or hand placed angles), and exhaustive secondary data
(e.g. seismic or a kriged map of dense data).

Surface Data
When the continuity of the variable of interest follows a known structural surface, the
tangent of that surface can be used to infer the LVA field (Figure 8). This is usually well
supported in software and the dip of a surface can be calculated with built in functions.
This does not provide the magnitude of anisotropy, but that is typically kept constant
within each domain. This gives rise to the idea of ‘dynamic anisotropy’ where the mag-
nitude of LVA is typically constant; note that ‘dynamic anisotropy’ is just a restricted
case of LVAmodeling. It is important to note that when LVA follows easily modeled sur-
faces, stratigraphic coordinate transformations (Latifi & Boisvert, 2022) are preferred
over dynamic anisotropy with the LVA field obtained from the surfaces. In general, if
coordinate transformation such as vein straightening, stratigraphic flattening, or cylin-
drical/spherical/etc. can be applied, they will outperform LVA modeling because they
directly model the features that control the LVA.
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Figure 8: LVA inferred from surface tangents.

Figure 9: LVA inferred from 2D axial data (Lillah & Boisvert, 2012).

Point Data
The axial nature of orientation data makes estimation of the LVA field from point mea-
surements difficult. ‘Axial’ refers to data where the direction of propagation is unknown
or irrelevant. When considering LVA, a variogram in the 45° direction is considered the
same as a variogram in the 45°+90° direction. 2D axial data can be processed by dou-
bling the angles before their decomposition (Figure 9). The angle is doubled, the sin
and cos are estimated in the domain, the angles are reconstructed, and finally divided
by 2. This doubling trick makes it so that 180° is identical to 360° and accounts for the
‘wrapping’ at 360°/0°.

The doubling trick does not work in 3D, 3D axial data are defined by strike/dip/-
plunge or roll/pitch/yaw. These angles are converted into a quaternion representation
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(Lillah & Boisvert, 2015; Yang, 2012). Quaternion rotation is used to align the quater-
nions to a common reference frame, ensuring that they are in a consistent orienta-
tion before averaging (Figure 11). An average quaternion representing the average ori-
entation is constructed by assigning weights to the quaternions and calculating their
weighted average. The three quaternions are estimated exhaustively, similar to how
the sin and cos values were estimated in 2D, then the quaternions are converted back
into three angles (e.g., Euler angles) that exhaustively define the orientation of the LVA
field.

Exhaustive Data
Often exhaustive secondary data, such as geophysical surveys, have the same local
anisotropy features as the variable of interest. In these cases, the LVA field can be ex-
tracted from the exhaustive data and used in estimation or simulation. This is typically
done withmoving windowmethods where the LVA is inferred from local windows. One
method is to calculate the gradient field g(u) for every point u from the exhaustive data
(Lillah & Boisvert, 2012). Alternatively, the moment of inertia (Pyrcz & Deutsch, 2014)
of the local window or its covariance map can be calculated and used to infer the local
orientation of anisotropy (Lillah & Boisvert, 2012), as in Figure 10. It is difficult to infer
a priori which moving window method will perform best for a given domain; the most
common issue is that the angles are quite noisy and require smoothing after generat-
ing the LVA field, as the LVA field should be ‘smooth’; Think about modeling a trend in
the mean (Harding & Deutsch, 2021) where the mean should vary smoothly in the do-
main, the same is true here for a trend in the anisotropy (a.k.a. LVA). It is recommended
that multiple methods of LVA extraction be applied to the domain of interest and the
modeller choose the one that is the most appropriate.

6 Summary

This lesson discusses the limitations of using fixed anisotropy in modeling geological
domains and suggests locally modeling LVA to improve geostatistical models in com-
plex geological settings. Three methods of incorporating LVA presented are 1) hard
boundaries between domains, suitable for abrupt changes in anisotropy; 2) local vari-
ogram reorientation, assuming constant anisotropy within a defined search radius for
smoothly varying anisotropy; and 3) modifying covariance between locations consider-
ing varying anisotropy within the search neighborhood, often using the shortest path
distance (SPD) to account for curved continuity paths. Generating the LVA field is identi-
fied as a challenging step, with three approaches explored: 1) inferring LVA from known
structural surfaces; 2) using doubling tricks or quaternion representations for process-
ing axial data; and 3) extracting LVA from secondary data sources like geophysical sur-
veys. LVA modeling is essential for capturing non-stationary anisotropies in complex
geological settings, enabling improved representation of trends in the variogram.
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Figure 10: LVA inferred from exhaustive data using local window. Modified after: (Lillah
& Boisvert, 2012)
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