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Learning Objectives

• Understand the optimality of kriging estimates and the calculated weights
• Recognize counterintuitive results and their origins
• Identify practical situations where counterintuitive results require mitigation

1 Introduction

Most resource models in the mining industry are constructed by kriging. Each block
estimate in themodel is a locally linear estimate based on the nearby data; the weights
are different for every grid block. The response surface created by the block model of
kriged estimates is highly non-linear, reproduces the available sample data and consid-
ers a site-specific measure of spatial continuity. Kriging is the mathematically optimal
solution for assigning weights to data when estimating at an unsampled location. Op-
timality is defined as minimizing the squared difference between the estimate and the
unknown truth (Leuangthong, Khan, &Deutsch, 2011). The utility of kriging has been es-
tablished by thousands of models and validation studies over decades. Notwithstand-
ing the provennature of kriging, there are implementationmeasures needed in practice
to address concerns regarding the string effect and negative weights. These concerns
arise due to redundant data.

Kriging
A fundamental aspect of geostatistics involves estimating a variable throughout a do-
main using the available data. It is essential to define reasonable stationary domains
and determine their statistical parameters such as the mean, variance, and variogram
model (Chilès & Delfiner, 2009). A well-established paradigm is to estimate the variable
for each grid block with a weighted linear estimate (Leuangthong et al., 2011). Calculat-
ing the appropriate weights for the nearby data is crucial. Historically, geologic model-
ers assigned weights inversely proportional to the distance between the data and the
grid block being estimated. However, this method does not account for site specific
spatial continuity, consider complex data configurations or satisfy a clear measure of
optimality (Leuangthong et al., 2011). Daniel G. Krige pioneered the work of optimal in-
terpolation in spatial concepts using linear regression throughout the 1950s. In 1963,
Georges Matheron formalized the techniques and coined the term “kriging”, in honour
of Daniel G. Krige, to describe a technique for determining optimal weights in spatial
estimation(Leuangthong et al., 2011). These weights minimize the estimation variance
considering spatial correlation with the variogram.

GeostatisticsLessons.com©2024 H. Markvoort and C. Deutsch 1

http://geostatisticslessons.com


Counter Intuitive Results
This lesson focuses on two scenarios where the kriging weights appear counterintu-
itive. These scenarios are the “String Effect” and “Negative Weights.” The String Effect
occurs when large weights are assigned to the endpoints on a string of collinear data
(see Fig 1). Negative Weights may occur even though the data value is positively corre-
lated with the grid block location, commonly seen when a data point lies behind or is
screened by other data (see Fig 2). (Deutsch, 1993) argued the large weights assigned
to the endpoints of string data are inappropriate and offered practical solutions. This
lesson aims to better understand these counterintuitive results, demonstrate they are
mathematically correct, and show practical circumstances where mitigating steps are
recommended.

Practical Circumstances and Mitigation
Practical circumstances exist requiring the mitigation of the string effect and negative
weights associated with screened data. In certain deposit types, high grades often oc-
cur at geological boundaries. In this case, the string effect can lead to a positive esti-
mation bias toward the center of the domain. Negative weights can create a halo of
negative grade estimates around a high-grade data point (Deutsch, 1996). This hap-
pens because the high-grade point receives a negative weight when screened by other
data points. If the grade is sufficiently high, the negative weight can overpower the
positive weights assigned to the surrounding relatively low grade data, resulting in a
negative grade estimate. These unwanted consequences aremitigated through search
restrictions when kriging.

2 Theory of Kriging

Kriging is an estimation technique that employs linear weighting of data; nearby data
points are typically assigned larger weights in estimation. The kriging weights are cal-
culated by minimizing the error variance (Leuangthong et al., 2011). Consider an un-
sampled location (u□) and (n) nearby points (uα), α = 1, . . . , n. The estimate at the
unsampled location Z∗

□ is written as:

Z∗
□ − m =

n∑
α=1

λα,□[z(uα)m]

Letting Y (u) = Z(u)m we can rewrite the equation as:

Y ∗
□ =

n∑
α=1

λαy(uα)

The assumption of stationarity implies the mean is 0, the variance is the same
throughout the domain, and the expected values of a product of Y values, the covari-
ance, is given by the modeled variogram.

E{Y (u)} = 0

E{Y (u)2} = σ2

E{Y (u)Y (u′)} = C(u, u′) = σ2 − γ(u, u′)
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The best estimate minimizes the error variance in expected value:

σ2
ϵ = E

{(
Y ∗
□ − Y□

)2}
expanding the terms leads to:

σ2
ϵ = E

{
Y ∗2
□ − 2Y ∗

□Y□ + Y 2
□
}

the estimate
n∑

α=1

λαy(uα) for Y ∗
□ is substituted into the equation leading to:

σ2
ϵ = E


n∑

α=1

n∑
β=1

λαλβYαYβ − 2

n∑
α=1

λαYαY□ + Y 2
□


the expected value is brought into the equation:

σ2
ϵ =

n∑
α=1

n∑
β=1

λαλβE{YαYβ} − 2

n∑
α=1

λαE{YαY□} + E{Y 2
□}

the expected value of a product of Y values is the covarianceC (calculated from the
modeled variogram):

σ2
ϵ =

n∑
α=1

n∑
β=1

λαλβCα,β − 2

n∑
α=1

λαCα,□ + σ2

This shows the error variance in terms of weights, λ, the variance, σ2, the covari-
ance between the data locations and the estimate location, Cα,□ and the covariance
between all pairs of data, Cα,β (Rossi & Deutsch, 2013). Each term of the equation
affects the estimation variance differently.

Term 3: σ2 is the variance of the stationary population. If all data points are deemed
irrelevant, all weights (λ’s) are zero and the estimate defaults to themean. The only non-
zero component in the estimation variance equation is the variance. The error variance
starts at the population variance and decreases as relevant data points are included.

Term 2: 2
n∑

α=1

λαCα,□ represents the closeness of the data to the unsampled loca-

tion. Closer data have a higher covariance, the negative sign in front of the term leads
to a reduction in error variance as the covariance between a data and the unsampled
location increases. The data valuemust also receive someweight for the error variance
to reduce.

Term 1:
n∑

α=1

n∑
β=1

λαλβCα,β considers the data redundancy between all of the data

points. High covariance between the data implies high redundancy which increases
the error variance.

The kriging equations are derived by taking the derivative of the error variance with
respect to each of the weights λα and setting them equal to zero for all α = 1, . . . , n.

∂σ2
ϵ

∂λα

= 0 − 2Cα,□ + 2

n∑
β=1

λβCα,β = 0

These are simplified to the following well known kriging equations:
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n∑
β=1

λβCα,β = Cα,□ for λ = 1, . . . , n

Expressed in matrix form, the left-hand side matrix contains the data configuration.
The right-hand side vector contains the relationship between each data point and the
estimation location (Leuangthong et al., 2011).

C11 C12 · · · C1n

C21 C22 · · · C2n

...
...

. . .
...

Cn1 Cn2 · · · Cnn



λ1

λ2

...
λn

 =


C1□
C2□
...

Cn□


These equations are well established in geostatistics and in other disciplines that

require estimates frommultiple data. The unconstrained solution is referred to as Sim-
ple Kriging (SK). It is common to constrain the sum of the weights to be 1 so that the
mean is not used in the estimate; this is referred to as Ordinary Kriging (OK) (Rossi &
Deutsch, 2013).

Note that (1) Kriging minimizes the error variance; confirmed by the second deriva-
tive of the error variance being positive, (2) existence and uniqueness of the solution
is guaranteed by a positive definite variogram model, and (3) Kriging is exact, that is,
if the location being estimated is at a data point, the estimate will be the value of the
data (Rossi & Deutsch, 2013).

3 Counterintuitive Weights

Specific data configurations can lead to counterintuitive weights when solving the krig-
ing equations. These counterintuitiveweights are causedbydata redundancy (Leuangth-
ong et al., 2011). Two manifestations of this phenomena are the String Effect and Neg-
ative Weights.

String Effect
The string effect appears in two common situations. The first, when drillhole data are
truncated by a geological boundary defining the stationary domain. The second, when
drillhole data is truncated by the boundaries of a local search ellipsoid (Deutsch, 1994).
Both situations create a string of data. The weights assigned to the end data points are
often larger than those assigned to the interior data points. These weights may seem
counterintuitive. However, the data at the ends of the string only have data on one
side. The implicit assumption of an infinite stationary domain entails that the end data
points informmore on the entire volume beyond the string leading to disproportionate
weights (Deutsch, 1993).

Figure 1 (online only) displays the SK and OK weights assigned to 9 data points, for
changing variogram ranges, when estimating at a point 8 meters away centered on the
string. Variogram ranges shown are with the major direction at 0 degrees, meaning
along the axis of the string. A variogram range of “16-32 Anisotropic” describes a range
of 16 in the y direction and 32 in the x direction. Results to note are:

1. The string effect is stronger in OK compared to SK.
2. The string effect is lower in the presence of a nugget effect for both SK and OK.
3. Anisotropy reduces the string effect when the range of the variogram is higher in

the direction perpendicular to the string.

GeostatisticsLessons.com©2024 H. Markvoort and C. Deutsch 4

http://geostatisticslessons.com


Negative Weights
Negative weights occur when data that are further away from the estimate location are
screened by closer data, rendering the outer points redundant. Figure 2 (online only)
demonstrates one possible data configuration where negative weights could occur and
the effect of differing variogram parameters. Negative weights are correct and allow
the extrapolation of trends in the data (Deutsch, 1996). Note that this happens when
the covariances are all positive and the covariance matrix is positive definite.

The string effect and negative weights appear to be different phenomena; however,
they are manifestations of the same underlying principle: redundancy. The kriging
weights are calculated byminimizing error variance. Terms 1 and 2 in the error variance
equation relate to data configuration and redundancy. The string effect occurs because
the end data is less redundant than the interior string data. Negative weights occur as
the closer data renders the outer data redundant.

4 Correctness of Kriging Weights

Experiment 1
Two experiments are conducted in a stationary setting to test the optimality of kriging
weights. While an ideal ergodic (infinitely large) setting requires a domain size three to
ten times the largest variogram range, these experiments are conducted on a finite grid
of 128 by 128 and 250 by 250. The variogram ranges span from10 to 128 and somemay
not be considered ergodic by conventional standards. The first experiment compares
SK,OK and inverse distanceweight estimation techniques in a string effect andnegative
weight data configuration on a 128 by 128 simulated grid of data. The estimations are
carried out at every grid location and compared to the real values. The experiment is
run with changing isotropic, anisotropic and nugget effect variogram properties.

The first table summarizes the results of Experiments 1 and 2 for the string effect
configuration, while the second table presents the results for the negative weight con-
figuration. Results are displayed using the root mean squared error (RMSE) where
lower values indicate better performance. SK outperformed the other estimation tech-
niques in almost all configurations.

Experiment 2
This experiment optimizesweights and compares them to SKweights in the string effect
configuration. Two realizations of data are generated on a 250 by 250 grid, each real-
ization is transformed into tabular form in two orientations: the original and a flipped
version. This ensures no notion of “up or down” artifacts, allowing the results to be sta-
tionary and symmetric. λ1 through λ9 are initially set to 1/9. A λ is randomly selected
and perturbed by a factor between 0.8 and 1.2. The RMSE is calculated for the entire
table with the new lambda. If the error is lower, the new lambda is kept; otherwise, the
original lambda is retained. This loop is performed 200,000 times then repeated with a
step size of 0.99 to 1.01 to refine the weights. The experiment is run 8 times to ensure
reproducibility. The manually optimized weights are nearly identical to SK. Discrepan-
cies are reported at the second or third decimal place. Figure 3 displays results from
trials 1 and 2.

These two experiments collectively demonstrate the optimality and correctness of
kriging weights through different approaches:
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Figure 1: Comparison of Experiment 1 & 2 RMSE Results for the string effect data con-
figuration.
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Figure 2: Comparison of Experiment 1 & 2 RMSE Results for the negative weight data
configuration.
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Figure 3: Comparison of manually optimized and SK weights from trial 1 and 2 for
Experiment 2 .

1. Experiment 1 compares kriging methods with other traditional weighting meth-
ods. Results show SKweights are optimal in both string effect and negativeweight
data configurations.

2. Experiment 2 compares manually optimized weights with SK weights. Results
prove kriging weights are near-optimal solutions for minimizing error variance.

The string effect and negative weights are mathematically correct and proved opti-
mal. However, practical circumstances exist where these counterintuitive weights can
cause issues for geostatistical estimation and require mitigation.

5 Mitigating Counterintuitive Weights

The string effect can lead to overestimation or underestimation bias in a resource es-
timate. An example where the string effect could lead to overestimation is described
in the following scenario. High grade frequently lies at geological boundaries within
mineral deposits, which are often used to define stationary domains. The string effect
assigns high weights to the contact samples resulting in overestimation. Figure 4 illus-
trates a simplified scenario where the string effect causes overestimation bias in the
center of the string with unrestricted OK. The behaviour of the bias will change depend-
ing on where the low and high grade exist or in the presence of a trend.

Two steps are taken to mitigate this consequence of the string effect.

1. Composite the drillhole appropriately.
2. Limit the number of samples per drillhole to 2 or 3

Figure 5 demonstrates the effect of restricting the OK search by limiting the number
of samples used per drillhole to three. The estimate is less smooth, and the samples
at the contact do not bias the estimate at the center of the domain.
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Figure 4: Unrestricted OK estimate results 20m away from a string of 20 data highlight-
ing overestimation bias.

Negative weights are also mathematically correct and allow for extrapolation of
trends and features of data. Without them, it would be impossible to estimate above
or below data limits (Deutsch, 1996). Solving the kriging equations does not constrain
the estimate to be above zero. This is acceptable for some unbounded variables (e.g.,
normal scores or elevation), but it is not feasible for physical variables (e.g., grade or
thickness).

Three options for mitigating negative weights include:

1. Constrain negative grade estimates by resetting them to zero after the fact. This
method is mathematically correct and provides the closest plausible best esti-
mate.

2. Limit the search radius. Generally, to an effective range or 2 to 3 data spacings.
3. Limit the number of data used per estimation, either total or by octant, limiting

the number of screened data used per estimation.

Figure 6 compares unrestricted and restricted OK results. The purple dot in the
center represents a high grade sample and the black dots represent low grade samples.
All estimation results below zero are displayed in red. In this data configuration the high
grade sample can cause negative grade estimates when using an unrestricted search.
In this example, restricting the OK search to 1 sample per octant mitigates the issue of
negative estimates.

Restricting the search in an ideal stationary ergodic setting would increase RMSE
from 1 to 5% versus a large search embracing the string effect and negative weights. In
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Figure 5: Restricted OK estimate results 20m away from a string of 20 data highlighting
effect of search restriction on the string effect.

Figure 6: Comparison of restricted and unrestricted OK results. A high grade sample in
the center is represented by the purple dot and low grade samples are represented by
black dots.
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practice, however, it is important to keep in mind that real geologic settings are neither
stationary nor ergodic.

6 Discussion

This lesson explores the intricacies of kriging, the current optimal geostatistical method
for assigning weights to data when estimating at unknown locations. Through a series
of experiments, the correctness and optimality of kriging weights are validated. The
experiments highlight the superiority of kriging over traditional weighted estimation
methods, and the optimality of kriging weights.

Despite theirmathematical correctness and optimality, counterintuitive weights like
the string effect and negative weights can pose practical challenges. The string effect
may lead to overestimation or underestimation bias in circumstanceswhere high grade
or low grade occurs at geological boundaries within mineral deposits. This necessi-
tates mitigation strategies such as appropriate compositing and limiting the number
of samples per drillhole. Negative weights, while mathematically correct, can result in
impossible negative estimates for physical variables like grade or thickness. Mitigation
strategies include resetting negative estimates to zero, limiting the search radius, and
restricting the number of data points used per estimation.

While kriging remains a powerful and reliable method for geostatistical estimations,
understanding how weights are calculated and addressing the implications of coun-
terintuitive weights are crucial for its effective application in practical scenarios. The
methodologies andmitigation strategies discussed provide a framework for producing
accurate kriging estimates in various geostatistical contexts.
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