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Learning Objectives

• Review Simple Kriging as the best linear unbiased estimator
• Understand that constraints can improve estimation in some circumstances
• Appreciate the variety of constraints that can be considered in Kriging

1 Introduction

Calculating the best estimate of a regionalized variable at an unsampled location is
required in many circumstances. Such spatial interpolation has many applications in
resource modelling, environmental site characterization and other situations. Several
interpolation approaches have been developed, such as low-order polynomials and
spline functions (Wahba, 1978), which predominantly depend on mathematical func-
tions. These variables are mostly treated as random variables, even though they result
from underlying natural phenomena and cannot be modeled by a single mathemati-
cal equation (Oliver & Webster, 1990). Matheron introduced Kriging, which is based
on continuous random variables and the configuration of data available for estimation
(Matheron, 1962). Kriging is preferable to other techniques because it is considered the
best linear unbiased estimator, as it minimizes the error variance. Moreover, its foun-
dation lies in site-specific relationships between the data and between the data and
the unsampled location being estimated (Rossi & Deutsch, 2013). Adding appropriate
constraints to Kriging can make it more robust and applicable to different scenarios.
This Lesson considers a number of different constrained Kriging approaches and their
applicability. The following variants are reviewed: 1) Simple Kriging, 2) Ordinary Krig-
ing, which is the most widely used type of Kriging, 3) Ordinary Cokriging, 4) Penalized
Kriging, 5) Universal Kriging, and 6) Compositional Kriging. Appreciating the flexibility
of adding constraints to Kriging provides insight into other applications.

2 Best Local Estimate

An important concept in Kriging is a quantitative measure of “best”. Themost common
measure is minimizing the mean squared error, which is equivalent in practice to maxi-
mizing theR2 coefficient of determination. A consequence ofminimizing squared error
is that the estimates will regress to the mean when there are few local data. There are
times when a restricted search is applied to anticipate future information by avoiding
smoothing the estimate, but this is done at the expense of larger errors.

A second important concept in Kriging is that of a locally linear estimate. Taken
together, multiple Kriged estimates are highly nonlinear, but each local estimate is a
linear function of the data. Kriging is strongly data driven; the estimates are linear
combinations of the data and the weighting of the data is based on an understanding
of spatial variability that also comes from the data.
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Kriging is appliedwithin stationary domains. Consider a regionalized variable {Z(u),u ∈
A}, where Z denotes the variable or rock property under consideration, u denotes a
location vector, and A denotes the stationary domain under consideration. Kriging re-
quires a model of the spatial variability of the data. The covariance and variogram are
two measures for this purpose(Rossi & Deutsch, 2013). The covariance quantifies the
similarity of data, and it is calculated by:

C(h) = E{Z(u) · Z(u+ h)} −m2

Where h represents a lag vector, andm is the mean of the data. This function must
be defined for any lag vectors between the data and between unsampled locations.
The variogram represents the dissimilarity of data:

2γ(h) = E
{
[Z(u)− Z(u+ h)]2

}
Common practice in geostatistics is to calculate experimental variogram values for

lag vectors in principal directions, then fit them with a valid variogram model. The
model reduces noise in the experimental calculations and provide the variogram for
all possible lag vectors. An assumption of stationarity allows the covariance to be cal-
culated from the variogram: C(h) = σ2 − γ(h), where σ2 is the stationary variance.

Consider estimation at an unsampled location u considering n local data denoted
as z (ui). Simple Kriging is the first approach. In this method, the constant stationary
mean is considered in the estimate:

z∗SK(u)−m =

n∑
i=1

λi(u). [z (ui)−m]

Where z∗SK(u) is the Simple kriging estimator at the unsampled location. Theλi(u) for i =
1, . . . , n values are the weights that each data receive. The error variance is minimized
yielding the following system of equations to compute the weights:

n∑
j=1

λj(u) · C(uj,ui) = C (ui,u) for i = 1, . . . , n

The C(uj,ui) values are the covariance values between each pair of data and the
C(ui,u) values are the covariance between the unsampled location and the data lo-
cations. The known mean receives more weight if the data receive less weight. The
minimized estimation variance may also be calculated:

σ2
E(u) =

n∑
i=1

n∑
j=1

λi(u)λj(u)C (ui,uj)− 2 ·
n∑

i=1

λi(u)C (ui,u) + σ2

Themathematics of kriging iswell documented inmany references including Cressie
(2015), Olea (2012), and McLennan, Leuangthong, & Deutsch (2006). Note that the
weights must be recalculated for each unsampled location. This unconstrained opti-
mization, known as Simple Kriging, calculates estimates that are a combination of the
data and the global mean.

3 Lagrange Formalism

Optimization problems usually come with some constraints. In many cases, these con-
straints can be expressed as linear functions of the parameters. The Lagrange formal-
ism can be invoked to solve constrained optimization. The premise being that the op-
timum value of the objective function occurs at its extreme points. At these points,
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the gradient of the objective function is a proportion of the gradient of the constraints
(Beavis & Dobbs, 1990). The general form of a constrained optimization problem can
be written as:

obj f(x)

s.t. gi(x) = 0 for i = 1, . . . ,m

Where the objective function is f(x), gi(x) = 0 are constraints, and m is the number
of constraints. The unconstrained form of the problem using Lagrange multipliers is
as follows:

h(x) = f(x)−
m∑
i=1

µi[gi(x)]

µi are the Lagrange multipliers. Where the partial derivative of h(x) is zero, the
objective function reaches its extreme point. The partial derivative of h is:

hx = fx −
m∑
i=1

µi[gix ] = 0.

fx and gx are the partial derivatives of f(x) and g(x) with respect to x, respectively
(Hoffmann, Bradley, & Rosen, 1989).

4 Ordinary Kriging

Among different variations of Kriging, Ordinary Kriging is arguably the most common
approach(Bazania & Boisvert, 2023). When the global mean is not considered locally
reliable, Ordinary Kriging becomes useful for estimating the value of the variable at
unsampled locations. This approach employs a search neighborhood at each location.
The core concept of Ordinary Kriging is to implicitly estimate the local constantmean of
the data values within the search neighborhood to calculate residuals. Simple Kriging,
then, utilizes these residuals for estimation (Pyrcz & Deutsch, 2014). This process is
achieved in one step with the Ordinary Kriging equations.

The estimated value at the unsampled location using Ordinary Kriging is expressed
as:

z∗OK(u) =

n∑
i=1

λi(u)z (ui) +

[
1−

n∑
i=1

λi(u)

]
m

Where the sum of weights equals one, the resulting estimate is unbiased, and does
not use the global mean. The Lagrangian form of the system of equations, after taking
partial derivatives, is as follows:{ ∑n

j=1 λj(u)C (uj,ui) + µ = C(ui,u) for i = 1, . . . , n∑n
j=1 λj(u) = 1

Where µ represents the Lagrangemultiplier. Solving this system of equations yields
the weights that minimize the error variance (Rossi & Deutsch, 2013). The weights
obtained through Ordinary Kriging differ from those of Simple Kriging. As Ordinary
Kriging works within search neighborhoods, the mean is considered constant within
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Figure 1: Weight for data values comparing ordinary kriging and simple kriging for dif-
ferent error variances.

the neighborhoods rather than across the entire domain. Consequently, it is quasi-
stationary rather than strictly stationary (Olea, 2012).

Figure 1 compares the weights obtained through Ordinary and Simple Kriging for
two sample points. It is evident from the figure that Simple Kriging yields the minimum
possible variance. Conversely, Ordinary Kriging produces a set of weights that mini-
mizes the variance while ensuring that their sum is equal to one. The black dashed line
in the figure represents the unbiasedness constraint. The gray circular contours repre-
sent increasing error variance contours as they move away from the minimum simple
kriging solution.

5 Ordinary Cokriging

There are situations where secondary data are available, that is, measurements with
greater error or of related rock properties. Expanding the kriging equations to include
secondary data leads to the technique known as Cokriging. Incorporation of secondary
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variables entails presence of spatial correlation between primary and secondary vari-
ables(Rossi & Deutsch, 2013). The estimate at an unsampled location is expressed as:

z∗OC(u) =

n1∑
α1=1

λα1(u)z (uα1) +

n2∑
α2=1

λ′
α2
(u)y

(
u′
α2

)
.

Where λα1(u) and λ′
α2
(u) are the weights assigned to the primary data and the sec-

ondary data, respectively. z (uα1) is the value of primary data, and Y
(
u′
α2

)
is the sec-

ondary data value at u′
α2
. n1 represents the number of primary data, and n2 stands for

the number of secondary data.
Simple Cokriging can be employed under the condition that the mean values for all

data types are known. Ordinary Cokriging can be utilized to relax this requirement. Or-
dinary Cokriging constrains the sumofweights to each data type to ensure an unbiased
estimate. There are two variants of Ordinary Cokriging.

The traditional method of Ordinary Cokriging is to separately constrain the sum of
weights to primary and secondary variables. The weights assigned to the primary vari-
able are constrained to sum to one, and the sumof weights assigned to each secondary
variable should equal zero. These constraints can be rewritten as

∑
α1

λα1(u) = 1 and∑
α2

λ′
α2
(u) = 0. A Lagrangemultiplier is required for the primary weight constraint and

additional Lagrange multipliers are required for each secondary variable. Traditional
Ordinary Cokriging is subject to negative weights and small weights to secondary data
that diminish the influence of secondary data.

The preferred method over Ordinary Cokriging is Standardized Ordinary Cokriging
(SOCK), as it avoids driving the weights of secondary data to zero. In SOCK, the sum of
all weights is constrained to one, and it involves the utilization of standardized variables.
The standardized value of a variable is:

Y =
Z− µ

σ

Here, µ and σ represent mean and variance of the variable, respectively. The estimator
for SOCK is written as:

n1∑
α1=1

λα1(u) +

n2∑
α2=1

λ′
α2
(u) = 1.

This approach requires one constraint and one Lagrange multiplier.

6 Penalized Kriging

In some cases, large positive weights in Ordinary Kriging are counterbalanced by neg-
ative weights maintaining the sum of weights equal to one. Although these weights
are theoretically correct, they may present practical challenges in presence of outliers.
Penalized Kriging tackles this issue by introducing an additional term to regulate the
magnitude of the weights (Rivoirard & Romary, 2011). The objective function of this
approach is modified to:

Q(λ(ui), µ) = σ2
E + 2µ

 n∑
j=1

λj(u)− 1

+

n∑
j=1

Vλ2
j (u) for i = 1, . . . , n.

The constant valueV serves as a regulating term, and its value plays a determinative
role in achieving the intended results. The derivative form of the objective function:
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{
λj(u)V +

∑n
i=1 λi(u)C (ui,uj) + µ = C(uj,u) for j = 1, . . . , n∑n

j=1 λj(u) = 1

The estimation and estimation variance equation resemble Ordinary Kriging. The
value of V would be calibrated or chosen by a sensitivity analysis.

7 Universal Kriging

In some cases, a clear trend in the mean limits the application of Simple and Ordinary
Kriging on account of their reliance on the assumption of stationarity. Universal Kriging,
also known as Kriging with trend, is designed to consider a functional form of the trend.
The assumption is that each data value consists of a residual random function and a
deterministic component that can bedeterminedusing a polynomial of the coordinates
(Wackernagel, 2003). The deterministic part can be rewritten as:

m(u) =

L∑
l=0

alfl(u).

Here, m(u) is the location dependent mean, and al are unknown coefficients that
are fitted from the data. The fl(u) terms are elementary functions [Wackernagel, 2003].
Conventionally, f0(u) is set to one, in order to include situations where the mean is
constant, similar to Ordinary Kriging (Rossi & Deutsch, 2013). Setting the expected
value of the estimate equal to the truth can be used to define the system of equations:

E[Z(u)] = E[Z∗(u)].

The left-hand side of the above equation is the local mean at the location being
estimated:

E[Z(u)] =

L∑
l=0

alfl(u).

In the right-hand side of the unbiasedness equation is the local mean of the esti-
mate:

E[Z∗(u)] =

n∑
i=1

λi

L∑
l=0

alfl(u).

The ensure unbiasedness, this equality must be satisfied:

L∑
l=0

alfl(u) =

L∑
l=0

al

n∑
i=1

λifl (ui) .

If fl(u) =
∑n

i=1 λifl (ui) for all l = 0, . . . ,L, the above equation is satisfied. There may
be alternative ways that this equality is met, but this is a reasonable alternative. Thus,
the system of equation for Universal Kriging:{ ∑n

j=1 λi(u)C (ui,uj) +
∑L

l=0 µlfl (ui) = C (ui,u) for i = 1, . . . , n∑n
j=1 λjfl (uj) = fl(u) for l = 0, . . . ,L

The µl values in the above equation are the Lagrange multipliers (Wackernagel,
2003). Universal Kriging may be unstable in extrapolation due to the potential insta-
bility of the fitted model for the local mean (Pyrcz & Deutsch, 2014).
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Kriging with an External Drift
Kriging with external drift is a slight modification of Universal Kriging. Instead of using
a polynomial to define the local mean, the value of another attribute can be used. The
local mean is defined as:

m(u) = a0 + a1Y(u).

Where Y(u) represents the secondary variable, and a0 and a1 are parameters for
fitting the local mean. The secondary variable should be linearly related to the primary
variable. Additionally, (1) it should demonstrate smooth variation between points since
it represents the mean, and (2) the values of the secondary variable must be available
at all locations. The application of Kriging with External Drift is limited in the mining
industry due to the absence of a secondary variable with a linear relationship to min-
eral grades. However, it has been utilized in other areas such as predicting air quality,
estimating temperatures, and seismic data integration (Rossi & Deutsch, 2013).

8 Compositional Kriging

When estimating compositional data, all values should be non-negative and sum to a
specific constant, typically 1 or 100%. For instance, when estimating the thickness of var-
ious soil layers in a domain, the results cannot be negative and the sumof all layer thick-
nesses must equal the total soil thickness. These two features should be considered,
along with accounting for spatial correlation during estimation. The desired estima-
tion can be achieved by incorporating additional constraints into the Kriging equations.
These constraints can be written as:

n∑
i=1

λk
i (u)z

k (ui) ≥ 0 for k = 1, . . . ,K

1−
K∑

k=1

n∑
i=1

λk
i (u)z

k (ui) = 0.

Here, λk
i is the weight corresponding to variable k of the data at ui. zk (ui) is the

value of variable k of the data at ui. The K and n represent the number of variables
and the number of data points respectively. For the sake of simplicity, the desired sum
is considered one.

As the problem at hand involves optimization with both equality and inequality
constraints, it necessitates a solution through the Kuhn-Tucker approach(Pawlowsky-
Glahn, Egozcue, & Tolosana-Delgado, 2015). The Kuhn-Tucker representation of Com-
positional Kriging is as follows:

n∑
i=1

Ck(ui,uj)λ
k
i (u) + µk + βkzk (uj) + αkzk (uj) = Ck(uj,u) for j = 1, . . . , n; k = 1, . . . ,K

n∑
i=1

λk
i (u) = 1 for k = 1, . . . ,K

K∑
k=1

n∑
i=1

λk
i (u)z

k (ui) = 1
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n∑
i=1

λk
i (u)z

k (ui) ≥ 0 for k = 1, . . . ,K

αk ≤ 0 for k = 1, . . . ,K

αk
(
λk
i (u)z

k (ui)
)
= 0 for k = 1, . . . ,K

The first constraint is introduced into the system of equations to prevent bias, with
µ as the associated Lagrange multiplier. Similarly, Lagrange multipliers α and β are
invoked to enforce non-negativity and summation constraints, respectively.

The concept of active constraints can be utilized for solving this optimization prob-
lem (Wismer & Chattergy, 1978). Theil and Van de Panne is an iterative approach for
finding active constraints. The first step for this approach is solving the problem with-
out considering inequality constraints. Then, new equality constraints are introduced
for violated constraints. This iterative process continues until there is no violated con-
straint (Walvoort & Gruijter, 2001).

9 Summary

This Lesson reinforced that Kriging is a widely used data-driven estimator in geostatis-
tics. It is based on continuous random variables, measures of spatial dependency in-
ferred from the data, and data geometry for determining theweighting of each data rel-
ative to each unsampled location. The Simple Kriging method requires a constant and
known mean throughout the domain. In practical circumstances, various constraints
for Kriging are introduced. Ordinary Kriging is widely used when the global mean is
unknown. Penalized Kriging adds a constraint to control the weights. Universal Kriging
deals with non-stationary data using polynomials for defining the local mean. Krig-
ing with External Drift incorporates a secondary variable to model the spatial trend.
Compositional Kriging addresses interpolation with compositional data, ensuring non-
negativity and maintaining summation constraints.

The interactive figure below illustrates the estimated values using various kriging ap-
proaches. A notable distinction emerges in the extrapolation segment of them. Specif-
ically, Penalized Kriging, while exhibiting a departure from exactitude at data samples,
demonstrates efficacy in extrapolation.

There are more Kriging approaches that are not discussed in this Lesson. Indicator
Kriging is one of themwhich works with categorical data. The formalism of constrained
Kriging is flexible and useful.
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