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Learning Objectives

• Review the importance of stationary domains
• Review the framework of radial basis functions (RBF)
• Compare RBF interpolation and dual kriging

1 Introduction

A critical task in geostatistical modeling is the delimitation of domain boundaries. This
is performed to satisfy the decision of stationarity used in geostatistical workflows.
These domains can be based on grade, lithology, alteration, mineralization, structure
or a combination of these factors. Historically, a manual interpretation of the domain
boundaries was considered based on the experience and knowledge of the geologist.
There could be different interpretations in presence of widely spaced data (Silva &
Deutsch, 2012) and these can be time-consuming and difficult to reproduce.

Figure 1: Different interpretations of the same boundary modeling problem (between
red and blue)
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To supplementmanual interpretation, several mathematical approaches have been
developed for implicit modeling; a common method is the interpolation of signed dis-
tance functions using Radial Basis Functions (RBF) (Cowan et al., 2003). Signed distance
functions have been widely used for implicit surface inference (Osher & Fedkiw, 2003).
RBFs were first mentioned in the geological literature by (Hardy, 1971). The develop-
ment of RBFs was in parallel to the work of Matheron on regionalized variables (Math-
eron, 1963). A key difference between RBFs and Kriging is that RBFs use a positive def-
inite basis function and Kriging uses the covariance function for interpolation (Cowan
et al., 2003). Additionally, Kriging often computes weights for each estimate using a lo-
cal search neighborhood; RBFs conventionally use all samples to compute the weights
once. There is a similar formof Kriging, calledDual Kriging (Chilès &Delfiner, 1999), that
also computes the weights once. RBF and Kriging interpolation are discussed below.

For implicit boundarymodeling, the distance between samples and the nearest sam-
ple of a different domain is calculated, negative values are set for samples that fall in-
side the domain being modeled and positive values for samples that fall outside. Then,
the distances are interpolated and the boundary between domains is extracted where
distance = 0. There are several methods for interpolation; discrete smooth interpola-
tion (Mallet, 1989), classical geostatistical methods (Blanchin & Chilès, 1993) and RBF
methods (Cowan et al., 2003), RBF with gradients and constraints (Hillier, Schetselaar,
Kemp, & Perron, 2014) and RBF with local anisotropy (Martin & Boisvert, 2017). In this
lesson, the Radial Basis Function (RBF) methodology will be reviewed. A comparison
with Kriging will be presented.

2 Stationary Domains

Given a set of samples, two types of models can be used to predict values at unknown
locations. If the laws that command the behavior of the samples are well known, a de-
terministic model can be inferred and the prediction of values is quite straightforward.
Unfortunately, mineral deposits are typically the result of many complex and chaotic
geological processes. These processes are too complex to define a deterministicmodel
based on sparse data, thus, it is assumed that sample values are the result of stochas-
tic processes. In these cases, a probabilistic model may be used (Isaaks & Srivastava,
1989).

In a probabilistic model, samples are considered to be realizations of random vari-
ables Z(ui) for i = 1, ..., N . Several samples at each location u would be needed to
calculate probabilistic parameters such as the mean and variance. This is impossible
since there is only one sample per location. To address this problem, the random vari-
ablesZ(ui) are assumed to be stationary. Stationarity entails that the randomvariables
follow the same probability laws independent of their location, therefore, probabilistic
parameters, like the mean m(u), are the same at all locations. The assumption of sta-
tionarity is a key component in the derivation of geostatistical tools like Kriging (Isaaks
& Srivastava, 1989).

The geologic region is divided into domains that are assumed tobe stationary (McLen-
nan, 2007). These domains are considered to be statistically homogeneous and share
common geological characteristics. The definition of domains should lead to better
reproduction of geological features and more reliable models.
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3 Distance Functions

For clarity, the following assumes the presence of two domains; one that is inside and
the other outside. The formalism can be extended to more than two domains. The first
step is to assign an indicator to each sample. The indicator will take the value of 1 if the
sample is inside the domain, or 0 if the sample is outside (Silva & Deutsch, 2012):

I(ui) =

{
1 if ui belongs to the domain
0 if ui otherwise

where, ui, i = 1, ..., N are the locations of the samples. Then, the distance to the nearest
sample with a different indicator is calculated:

DF (ui) =

{− argmin(r) if I(ui) = 1

+ argmin(r) if I(ui) = 0

where argmin() returns theminimum value and r is the Euclidean straight line distance:

r(ui,uj) =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

Commonly, geological domains have anisotropy, that is, a different length scale of con-
tinuity in different directions. In these cases, the distance between samples can be
calculated by:

r(ui,uj) =

√(
xi − xj

ax

)2

+

(
yi − yj
ay

)2

+

(
zi − zj
az

)2

where ax, ay, az are the ranges of anisotropy. The coordinates x, y and z are rotated to
align with the directions of principal continuity (Silva & Deutsch, 2012). These distance
function values will be used as measurements for interpolation.

4 Radial Basis Function Framework

Given a set of measurements f(ui) at locations ui, i = 1, ..., N , an interpolator s(u)
can be defined to predict values at any unsampled location. The interpolator should
reproduce the measurements at their locations s(ui) = f(ui) (Fasshauer, 2007).

To define s(u), a common approach is to consider a weighted linear combination of
functions Bi (Fasshauer, 2007):

s(u) =

N∑
i=1

wiBi(u)

The functions Bi are referred to as basis functions. The interpolator s(ui) has to
replicate the measurements at their respective locations: s(ui) = f(ui), which leads to
a system of linear equations:

Aw = f(ui)
B1(u1) B2(u1) · · · BN (u1)
B1(u2) B2(u2) · · · BN (u2)

...
...

. . .
...

B1(uN ) B2(uN ) · · · BN (uN )



w1

w2

...
wN

 =


f(u1)
f(u2)
...

f(uN )


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Figure 2: Schematic illustration showing the spatial interpolation problem, that is, five
data locations and one location being estimated.

where A is a matrix of basis functions: Aij = Bj(ui) for i, j = 1, ..., N , f(ui) is a column
vector of measured values andwi are the weights. A transform of the distance function
ϕ(r(u,ui)) can be used as the basis function Bi(u) = ϕ(r(u,ui)):

s(u) =

N∑
i=1

wiϕ(r(u,ui))

If we consider that ϕ(r(u,u1)) = ϕ(r(u,u2)) if r(u,u1) = r(u,u2), then ϕ(r(u,ui)) has
the same value for fixed distances r to a center location u. This means that ϕ is radially
symmetric to u, and hence, is named a Radial Basis Function (RBF) (Fasshauer, 2007).

As mentioned, the weights are found by solving a system of linear equations. To
assure that the system has a solution, the RBF matrix is required to be positive definite
(Fasshauer, 2007). Some commonly used positive definite RBFs are shown in the table
below:

RBF Equation Properties

Gaussian ϕ(r) = e−ϵ2r2 Positive definite
Spherical ϕ(r) = 1.5ϵr − 0.5(ϵr)3 Positive definite, for r<1

Exponential ϕ(r) = e−3r/ϵ Positive definite
Multiquadratic ϕ(r) =

√
1 + (ϵr)2 Conditionally positive definite

Linear ϕ(r) = r Conditionally positive definite only in 1-D, parameter free

Table 1: Selected radial basis functions (Fasshauer, 2007)
Where ϵ is a chosen parameter. Kriging is perhaps the most broadly used interpo-

lator in geostatistics, see next.
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5 Ordinary Kriging

Ordinary Kriging (OK) is a widely used linear estimator:

z∗(u) =

N∑
i=1

λi · z(ui)

where z∗(u) is the estimated value at the unsampled location u, λi are weights and z(ui)
are samples at locations ui. The OK estimator constrains the estimator to be unbiased.
To satisfy this constraint of unbiasedness, the sum of the weights has to be one (Isaaks
& Srivastava, 1989). The weights are calculated by minimizing the error variance. The
partial derivatives of the error variance and the constraint of unbiasedness provide n+1
equations for n unknown weights and a Lagrangemultiplier (Isaaks & Srivastava, 1989):

N∑
j=1

λjCov(ui,uj) + µ = Cov(u,ui) ∀i = 1, ..., N

N∑
i=1

λi = 1

where Cov(ui,uj) is the covariance between locations ui and uj . The solution to this
problem can be written as:

Cλ = c


C11 C12 · · · C1N 1
...

...
. . .

...
...

CN1 CN2 · · · CNN 1
1 1 · · · 1 0



λ1

...
λN

µ

 =


c1
...
cN
1


where, Cij = Cov(ui,uj) and ci = Cov(u,ui). The covariance between all pairs of loca-
tions is obtained from the variogram model. Usually, OK uses search neighborhoods
for computational efficiency but, in the case of distance functions, all samples could be
considered to reduce artifacts (Silva & Deutsch, 2012).

6 Dual Kriging

The equation for the kriging weights (see above) can be written as:

λT = cTC−1

Inserting these weights into the equation for the estimator leads to:

z∗(u) = cTC−1z

The product C−1z can be expressed as:

d = C−1z

Cd = z
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
C11 C12 · · · C1N 1
...

...
. . .

...
...

CN1 CN2 · · · CNN 1
1 1 · · · 1 0



d1
...

dN
b

 =


z(u1)
...

z(uN )
0


where d = [d1, d2, ..., dN , b] is the result of the product C−1z.

Then, the estimator can be written in the dual form as:

z∗(u) = cT d

z∗(u) =

N∑
i=1

diCov(u,ui) + b

This is called the Dual Kriging form (Chilès & Delfiner, 1999). Dual Kriging is more
computationally efficient than the primal form of Kriging because the weights (di) are
calculated just once for all estimates (Stewart, Lacey, Hodkiewicz, & Lane, 2014). The
estimates are calculated by the weighted linear combination of covariances between
the estimate location and the samples. Notice that Dual Kriging has a similar form to
RBF interpolation, where:

ϕ(r(u,u1)) = Cov(u,ui)

The covariance function can be considered as a radial basis function and the weights
are calculated by a similar linear system of equations.

7 Example of RBF Interpolation

A boundary limit will be calculated from four samples from two different domains. The
distance between samples and the nearest sample from other domain is calculated.
By convention, negative distance values are assigned to samples of the domain been
modeled:

Sample Domain x y

u1 1 5 4
u2 1 10 6
u3 2 3 10
u4 2 11 8

As an example, the interpolated distance at location p = (7, 8) is calculated using
the Gaussian RBF ϕ(r) = e−ϵ2r2 with ϵ = 0.1. The following equation is used to compute
the weights:


ϕ(r(u1,u1)) ϕ(r(u1,u2)) ϕ(r(u1,u3)) ϕ(r(u1,u4))
ϕ(r(u2,u1)) ϕ(r(u2,u2)) ϕ(r(u2,u3)) ϕ(r(u2,u4))
ϕ(r(u3,u1)) ϕ(r(u3,u2)) ϕ(r(u3,u3)) ϕ(r(u3,u4))
ϕ(r(u4,u1)) ϕ(r(u4,u2)) ϕ(r(u4,u3)) ϕ(r(u4,u4))



w1

w2

w3

w4

 =


f(u1)
f(u2)
f(u3)
f(u4)


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Figure 3: Distance to nearest sample from different domain


1 0.75 0.67 0.59

0.75 1 0.52 0.95
0.67 0.52 1 0.51
0.59 0.95 0.51 1



w1

w2

w3

w4

 =


−6.3
−2.2
6.3
2.2


Solving the system of equations gives:

w1

w2

w3

w4

 =


−12.2
−27.8
14.5
28.5


The interpolated distance:

s(u) =

N∑
i=1

wiϕ(r(u,ui))

−12.2 ∗ 0.82 +−27.8 ∗ 0.88 + 14.5 ∗ 0.82 + 28.5 ∗ 0.85 = 1.65

As the weights do not depend on the location being estimated, interpolated dis-
tances can be computed at all locations. An example of RBF interpolation on a grid
using the Gaussian RBF for different values of ϵ is shown in the figure below (web ver-
sion only). A boundary line is drawn where distance = 0:

The RBF interpolation of signed distance functions is not constrained to a 2 dimen-
sional grid only. It can be applied on a 3 dimensional grid and also be used for boundary
delimitation of more than two domains:

The extension to account for more than two domains will be reviewed below.
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Figure 4: RBF interpolation 3D

8 RBF and Kriging Comparison

Stationarity is assumed to derive the Kriging formulation. The measurements should
satisfy this assumption to get reliable estimates. This constraint is challenging when
interpolating distance due to the non-stationary nature of distance functions. In ad-
dition, Kriging methods use the variogram to obtain the weights. In some cases, the
variograms are difficult to model and are not reliable (sparse sampling). As the RBF
formulation does not rely on the assumption of stationarity and does not depend on
variograms, it may be more robust in this situation (Cowan et al., 2003), although, esti-
mates will be more accurate if stationarity is reasonably satisfied (Stewart et al., 2014).

Kriging aims to minimize and error or estimation variance. The minimized estima-
tion variance can be computed and used as a measure of local estimation error that
represents the data configuration (Rossi & Deutsch, 2013). There is no quantification
of estimation variance in the RBF or Dual Kriging framework.

The variogram model is a way of describing the spatial correlation of the samples.
Typically, the variogram is modeled using nested structures with different shapes and
anisotropy (Rossi & Deutsch, 2013). Kriging uses covariance values obtained from the
variogram model to optimally weight the samples. Certain RBFs can play a similar role
in interpolation. The Gaussian and Inverse Multiquadratic functions are examples of
this characteristic, where the parameter ϵ determines themaximum influence distance
of samples. As the functions used to model variograms are positive definite, they can
also be used for RBF interpolation.

The example below shows implicit boundary modeling for three different RBFs with
similar ϵ parameter compared with Ordinary Kriging Dual form. There is a noticeable
difference between the shapes of the boundary limits generated by the RBFs and Dual
Kriging. The Gaussian RBF tends to generate a smooth boundary, whereas the others
RBFs and Dual Kriging follow the shape of the samples. In the case of the Exponential
RBF, RBF values approach zero faster than the Gaussian and Spherical RBFs values,
producing a smaller boundary. The volume and shape of the boundary can be modify
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Figure 5: Example of implicit boundary modeling using different RBFs and Ordinary
Dual Kriging

by changing the ϵ parameter, as it represents the radius of influence of the samples.
The shapes of the boundaries are fairly similar close to the samples, but they depart
considerably in scattered areas. Consequently, The boundary shape will depend on
the type of RBF used for interpolation, the ϵ parameter, and the data spacing. The
uncertainty of the boundary shapes could be calculated but RBFs and Dual Kriging do
not deliver an uncertainty estimation. Although Ordinary Kriging Dual form is using a
Spherical RBF as covariance function (with the same ϵ parameter used for the Spherical
RBF interpolation), it generates a closed boundary. Depending on the ϵ value, the data
may not influence unsampled locations that are far away. In the case of Dual Kriging,
the component b in the estimator is an estimate of the global mean. When locations
are far away, the summation goes to 0 and the b value prevails. In this example b has a
positive value, limiting the extension of the boundary. The Simple Kriging Dual form is
more similar to the RBF formulation as it does not have the b component.
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RBF interpolation and Dual Kriging appearmore computationally efficient than Krig-
ing, but the size of the dataset must be reasonably small, say less than 10000. Larger
systems require modifications, such as iterative solving methods (Beatson, Cherrie, &
Mouat, 1999) or domain decomposition methods such as partition of unity (Martin &
Boisvert, 2015).

9 Discussion

Even though RBF interpolation of distance functions is an established methodology
for implicit modeling, it has some drawbacks that must be taken into consideration.
Depending on the kernel used, RBF interpolation tends to be less reliable in sparse data
areas and could generate biased extrapolation volumes at the edges of themodel (Silva,
2015). Also, adding new data can change boundary limits a large distance away from
the new data in an apparently arbitrary manner. The boundary limits are dependent
on the drill hole spacing; the RBF interpolation may not put the boundary limit fairly
centered between samples of different categories. Moreover, it is difficult to modify
the interpolation approach to account for geological trends. Finally, there is no direct
uncertainty inference. There is ambiguity in the location of the boundary in presence of
widely spaced data, but interpolation algorithms provide only one best estimate. Some
of these problems have been addressed in the literature. A brief discussion of RBF
extensions and other applications follows.

An RBFmethodology with local anisotropy is presented by (Martin & Boisvert, 2015).
To include local anisotropy in the RBF framework, additional components are added to
the formulation:

s(u) =

N∑
i=1

wiϕ(r(u,ui)) +

M∑
j=N+1

αj∇ϕ(r(u,uj)) +

O∑
k=M+1

βktk∇ϕ(r(u,uk))

where i = 1, . . . , N are sample locations f(ui), j = N + 1, . . . ,M are gradient locations
with strike-dip data where the potential field of the scalar function is normal to the
planar orientation,∇f(ui) = nj , and k = M +1, . . . , O are tangent locations where tk is
a line tangent to the surface of interest, tk ∗ ∇f(ui) = 0. In some situations the set of
samples may have an underlying function that should be reproduced. In these cases,
a polynomial component can be added to the formulation (Fasshauer, 2007):

M∑
l=1

blpl(u)

where pl(u) are polynomials and bl are coefficients.
The formulation for boundary delimitation can be extended for multiple domains

(Silva & Deutsch, 2012). Instead of assigning a single indicator, an indicator vector Ik
of size K, say the number of domains, is assigned to each sample. A sample belong-
ing to the domain k will have a 1 in the k-th element of the vector and zero in the K-1
remaining elements. Similar to before, the distance function is calculated for each ele-
ment of the vector. Then, the signed distance function of each k domain is interpolated
using RBF or Kriging. The domain at each location is assigned by taking the minimum
estimated signed distance function at that location. A deeper insight of this methodol-
ogy can be reviewed in the geostatistic lesson Signed Distance Function Modeling with
Multiple Categories.
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Another method for implicit boundary modeling is the interpolation of indicators.
The methodology is described in detail by (Mancell & Deutsch, 2020). A 1/0 indicator
is interpolated and thresholded at a value that leads to an unbiased proportion inside
the domain. A nearest neighbor model is used to determine the unbiased proportion.
One advantage of this method is that it can provide amodel of uncertainty by changing
the threshold value. Optimistic and pessimistic boundary models can be created.

One of the major components of mineralization uncertainty is geological uncer-
tainty. Implicit modeling only delivers a deterministic domain model; there are modi-
fications to incorporate uncertainty (Munroe & Deutsch, 2008) and (Wilde & Deutsch,
2011).

10 Summary

RBFs and Kriging are interpolation methods of distance functions for implicit domain
boundary delimitation. Their formulation is similar, with differences regarding the as-
sumption of stationarity, error quantification, computational efficiency and parameter
selection. In recent years, variants have been developed to include geological trends,
anisotropy and uncertainty. Many software use these methods for implicit geological
modeling. The geologicmodeler will almost always have to intervene to ensure that the
resulting models satisfy complex geological constraints that defy simple incorporation
into implicit modeling.
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