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Learning Objectives

• Review the theory and implementation of Gaussian Mixture Models (GMM)
• Understand the application of GMMs in Geostatistics
• Demonstrate application of the GMM with practical examples

1 Introduction

Mixture models are common for statistical modeling of a wide variety of phenomena.
The premise is that a continuous distribution could be approximated by a finitemixture
of Gaussian or normal densities (McLachlan & Peel, 2000). These Gaussian mixture
models (GMMs) are considered to be semi-parametric distribution models since they
are neither defined by a single parametric formnor based entirely on the data. They are
usually fit with the Expectation-Maximization (EM) algorithm (Dempster, Laird, & Rubin,
1977) that is computationally efficient. The number of components used in the GMM
can vary while having a simple form to the probability density function (McLachlan &
Peel, 2000).

GMMs can reproduce complex univariate ormultivariate distributions of geoscience
datasets (Hadavand & Deutsch, 2020) and are applied for different purposes including
(1) fitting probability density functions to permit the extraction of conditional distribu-
tions, (2) imputation of missing data to facilitate the use of techniques that require a
full valued data table (Silva & Deutsch, 2018), and (3) clustering data into groups that
are internally consistent and externally different.

The fundamentals required to understand GMMs are reviewed. Then, the appli-
cation of GMMs to geostatistical modeling problems are explored, followed by small
practical examples.

2 Gaussian Mixture Model (GMM)

A GMM is a probability density function (PDF) represented as a weighted linear combi-
nation of Gaussian component densities. A GMM is represented as (Reynolds, 2009):

p(x|Ψ) =

M∑
i=1

wi g(x|µi, Σi)

where x is a D-dimension continuous-valued data vector, wi, i = 1, ...,M , are the mix-
ture weights, g(x|µi, Σi), i = 1, ...,M are the Gaussian components, denoted by their
mean µi and covariance matrix Σ. Ψ expresses the collection of all component pa-
rameters Ψ = (wi, µi, Σi), containing the weights, means, and covariance matrix for
all Gaussian components.

The interactive figure shows an example of fitting a GMM to a univariate distribution.
The user decides an appropriate number of Gaussian components (from one to eight
in this example). The number of components is a key choice and is discussed below.
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3 Implementation Details

Implementation of GMMs requires (1) deciding the number of Gaussian components
for fitting, and (2) applying a fitting algorithm (conventionally the EM algorithm) with
the desired covariance matrix type. The data considered in fitting the GMM may have
declustering weights assigned to them to account for preferential sampling. Setting
the marginal distribution independently of the data distribution is another alternative
in the presence of non-representative data.

Expectation-Maximization (EM) Algorithm
The EM algorithm is widely used for iterative computation of maximum likelihood es-
timates (MLE) of distributions (Ng, Krishnan, & McLachlan, 2012). The EM algorithm is
used to determine the parameters Ψ (weights, means, and covariances) of the mixture
model given some observedD-dimensional x data. This is achieved bymaximizing like-
lihood, which determines the optimal parameters of the Gaussian components. The
likelihood L(Ψ) is the joint probability of the observed data in terms of the statistical
model parameters, as follows:

L(Ψ) =

n∏
i=1

f(xi; Ψ)

The likelihood density function L(Ψ) = f(x; Ψ) of the vector containing the unknown
parameters Ψ (Ψ∗) is computed as (McLachlan & Peel, 2000): ∂ L(Ψ)/∂ (Ψ) = 0 or in its
more convenient logarithmic form: ∂ logL (Ψ)/∂ (Ψ) = 0. The iterative EM algorithm
used to calculate Ψ∗ consists of the following four steps (Saxena et al., 2017):

Step Action

1. Initialize the parameters Ψold: Usually k-means optimized centers are used as optimized
starting locations for running the first EM iteration.

2. E-Step: Evaluate the conditional expectation for each Gaussian component given the current
parameters at every data sample.

3. M-Step: Update the parameters Ψnew for maximization of likelihood to matching the
observed x values.

4. Check for convergence by comparing likelihood improvement of the initial parameters to the
updated parameters from M-step, additional details can be found in (Silva & Deutsch, 2015).

Steps 2 through 4 are repeated until the likelihood stabilizes, indicating convergence
to a local optimum (Silva & Deutsch, 2015). The tolerance for convergence is usually
considered to be a maximum number of iterations (100 is standard) or can be based
on the magnitude of the change between iterations (1x10−3 is standard).

Local Minima

In the context of GMM fitting, the EM algorithm is sensitive to the initialization of the
Gaussian parameters Ψ (Ng et al., 2012). A good practice that tends to avoid poor
convergence is to use the optimized k-means centroids as the µ means for starting
the first E-step (Ng et al., 2012). Another common strategy is to consider several runs
of the EM algorithm, where the initial parameters Ψ are randomly re-selected for each
run; the optimum result of all random restarts is selected as the final set of parameters.
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Covariance Matrix Type

The covariance matrix Σi models the statistical relationships between components,
that is, their spread, correlation and orientation. A covariance matrix needs to be pos-
itive definite and can be built in different forms: full, this is the most flexible type as
each Gaussian component has its own matrix (refer to (McLachlan & Peel, 2000)); diag-
onal, there are unique variances (diagonal terms) for each Gaussian component, but
the correlation structure is preserved; tied, parameters are shared between Gaussian
components (Pedregosa et al., 2011). Although the choice of covariance type might de-
pend on the amount of data available and the intended use of the GMM, using the full
covariance type is recommended for the majority of applications since it provides the
greatest flexibility.

Optimal Number of Components
There is a trade off between over- and under-fitting. A small number of components
are preferred to avoid over-fitting. Several methods are available to help determine
an appropriate number of components including the likelihood ratio test (LRT) and the
Bayesian information criterion (BIC) McLachlan & Rathnayake (2014). These metrics
help assess sensitivity to the number of Gaussian components for fitting a distribution;
however, the final decision of the number of Gaussian components rests with the prac-
titioner.

Likelihood Ratio Test (LRT)

There is a threshold where increasing the number of Gaussian components in a finite
mixture does not significantly improve the likelihood estimate. Multiple GMMs are fit
with an increasing number of components. The improvement in the fits are compared
and the difference or ratio between them serves as a useful metric. The test for this
hypothesis is the LRT (McLachlan & Rathnayake, 2014), defined as

λ = L(Ψg0)/L(Ψg1)

for some g1 > g0 (usually g1 = g0 + 1), where g is the number of components and λ is
the likelihood ratio. For appropriately low values of λ, g0 is disregarded as the optimal
number of components in favor of g1. An hypothesis test could be relative to −2logλ,
to serve as evidence against g0 (McLachlan & Rathnayake, 2014):

−2logλ = 2(logL(Ψg1)− logL(Ψg0))

It is usually more convenient to work with log-likelihood as the logarithmic form en-
hances the small differences generally seen in original likelihood values.

Bayesian Information Criterion (BIC)

A term is introduced to penalize a greater number of Gaussian components to avoid
overfitting. The minimum score reflects the optimal number of components. Using
more components results in a higher penalty:

BIC = −2logL(Ψ) + glogn

where g is the number of Gaussian components in the model and n is the number of
data points (McLachlan & Peel, 2000). The size of the dataset is also included in the
penalty term although it is constant for any particular set of data.
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Figure 1: BIC (green) and LRT (orange) analysis for the optimal number of GMM com-
ponents for the univariate data set fitting shown previously on the lesson.

Example Comparing BIC and LRT

An example follows which demonstrates the use of LRT and BIC. The two metrics are
compared in the context of defining the optimal number of components for the uni-
variate fit example.

BIC values for this dataset reach theirminimumwhen the number of components is
equal to two, increasingly at a constant rate afterwards due to the penalty term, which
is greater than the small likelihood improvement. The LRT reaches a local minimum
with three components then decreases slightly. However, the absolute minimum LRT
occurs when eight components are used, although at six components there is also a
very low local minimum. Visual inspection of the fit in 2-D or 3-D may help determine
the final number. A low number would often be preferred.
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Figure 2: Gaussian Mixture of 2 components fitting bivariate distributions, with respec-
tive probability distributions in shared axes.

4 Applications in Geostatistics

Fitting Probability Distribution Functions (PDFs)
GMMs are useful for modeling complex, high dimensional data common in geoscience
datasets (Sarkar, Melnykov, & Zheng, 2020). Generating smooth semiparametric mod-
els that fit the available data is an essential function of GMMs. The GMMmodeled PDF
can replace the original distribution for use in several geostatistical workflows. Con-
sider the following bivariate distribution fit by a GMM with two components. Each
component is parameterized by its mean, weights, and covariances, which combined
produce the final mixture model. A GMMwill show evidence of elliptical shapes (visible
on the plot) that correspond to the constituent Gaussian components.

The Trend Modeling and Modeling with a Trend lesson offers one great example of
GMMs primary application routes to modelling probability distributions. As explained
by Harding & Deutsch (2021), GMM allow the bivariate relationship to be reproduced
besides eliminating chances of binning artifacts in the Trend modelling work-flow.
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Multiple Imputation
Multiple Imputation (MI) (Barnett & Deutsch, 2015; Enders, 2010; Little & Rubin, 2002)
addresses an important and common geomodeling problem. Data sets are often miss-
ing measurements of some variables at some sample locations. Many geostatistical
modeling workflows do not allow missing variables. MI is used to ‘fill in’ the values
of variables missing at sample locations while honoring multivariate and spatial data
distributions (Deutsch, Palmer, Deutsch, Szymanski, & Etsell, 2016).

Applications where this is important include principal component analysis (PCA),
stepwise conditional transforms (SCT), minimum-maximum auto correlation factors
(MAF) and projection-pursuit multiple transformation (PPMT) (Silva & Deutsch, 2018).

GMMs have been integrated in MI by Silva & Deutsch (2018) to build the conditional
distributions from which to draw the imputed samples. This improves the accuracy
of the imputed values and reduces the computational expense of alternatives such as
kernel density estimation (Barnett & Deutsch, 2015; Silva & Deutsch, 2018).

Clustering
Clustering is a class of unsupervised machine learning techniques for grouping ob-
jects based on their similarities. Common techniques include hierarchical, partitioning,
model-based and probability density-based methods (Saxena et al., 2017). GMMs can
be used as a probabilistic density-based method for clustering. The Gaussian compo-
nents are fit to the available data and discrete classes (clusters) are assigned based on
the maximum likelihood of points belonging to each component (Martin, 2019; Sarkar
et al., 2020; Saxena et al., 2017; Zhang, 2021).

A porphyry gold-copper deposit is used to demonstrate the use of GMMs for cluster-
ing geological data sets. The 3-D map and the bivariate relationships are shown below.
The optimal number of clusters for this dataset is also tested using the BIC and LRTmet-
rics, which can be seen in the following interactive figure. It displays the location of the
varying assigned clusters as the number of components change. GMM clustering con-
siders the anisotropy in the data through the covariances; simple Euclidean clustering
would always give isotropic ‘blob-like’ clusters. The GMM’s clusters strong anisotropies
are visible in interactive figure below, especially for a higher number of components,
say between 6 and 8.

The LRT and BICmethods yieldmultiple possibilities for the optimal number of com-
ponents. BIC is minimized using three Gaussian kernels, while LRT is minimized with
eight components; however, five also shows a significant local minimum.

5 Discussion

Gaussian Mixture Models (GMMs) play a role in fitting a distribution of n-dimensional
data. There are some limitations. As explored by Zhang (2021), GMM clustering is
sensitive to data transformation, spikes (recurrent values), below detection limit (BDL)
samples, and outliers. A GMM may include overlapping components that provide a
reasonable fit to the distribution, but may not be appropriate for clustering. GMMs
are a widely used Machine Learning method, are easy to employ, and are accessible in
many different software packages.
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Figure 3: Porphyry data 3-D Location map at the left and joint-plot of Gold and Copper
variables (scatter-plot and marginal histograms) on the right side.

6 References

Barnett, R., & Deutsch, C. (2015). Multivariate imputation of unequally sampled ge-
ological variables. Mathematical Geosciences, 47(7), 791–817.

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Method-
ological), 39(1), 1–22.

Deutsch, J., Palmer, K., Deutsch, C., Szymanski, J., & Etsell, T. (2016). Spatial modeling
of geometallurgical properties: Techniques and a case study. Natural Resources
Research, 25(2), 161–181.

Enders, C. (2010). Applied missing data analysis. Guilford press.
Hadavand, M., & Deutsch, C. (2020). How many gaussian components for fitting

GMM? CCG Paper 2020-148,Centre for Computational Geostatistics, University
of Alberta, Canada.

Harding, B., & Deutsch, C. (2021). Trend modeling and modeling with a trend. Geo-
statistics Lessons. Retrieved from https://geostatisticslessons.com/lessons/
trendmodeling

Little, R., & Rubin, D. (2002). Statistical analysis with missing data (Vol. 793). John
Wiley & Sons.

Martin, R. (2019). Data driven decisions of stationarity for improved numerical modeling
in geological environments (PhD thesis). University of Alberta, Canada.

McLachlan, G., & Peel, D. (2000). Finite mixture models (p. 407). John Wiley; Sons.
McLachlan, G., & Rathnayake, S. (2014). On the number of components in a gaus-

sian mixture model. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 4(5), 341–355.

Ng, S., Krishnan, T., & McLachlan, G. (2012). The EM algorithm. In Handbook of com-
putational statistics (pp. 139–172). Springer.

GeostatisticsLessons.com©2022 C. Gomes and J. Boisvert and C.V. Deutsch 7

https://geostatisticslessons.com/lessons/trendmodeling
https://geostatisticslessons.com/lessons/trendmodeling
http://geostatisticslessons.com


Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Duch-
esnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12, 2825–2830.

Reynolds, D. (2009). Gaussian mixture models. In Encyclopedia of biometrics (pp.
659–663). Boston, MA: Springer.

Sarkar, S., Melnykov, V., & Zheng, R. (2020). Gaussian mixture modeling and model-
based clustering under measurement inconsistency. Advances in Data Analysis
and Classification, 14(2), 379–413.

Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O., Tiwari, A., … Lin, C. (2017). A
review of clustering techniques and developments. Neurocomputing, 267, 664–
681. http://doi.org/https://doi.org/10.1016/j.neucom.2017.06.053

Silva, D., & Deutsch, C. (2015). Program for fitting gaussianmixturemodels based on
EM algorithm and geostatistical applications. University of Alberta; Paper 2015-
407,CCG Annual Report 17, Centre for Computational Geostatistics, University of
Alberta, Canada.

Silva, D., & Deutsch, C. (2018). Multivariate data imputation using gaussian mixture
models. Spatial Statistics, 27, 74–90.

Zhang, H. (2021). Multivariate exploratory data analysis of spatial data to support geo-
statistical modeling (Master’s thesis). University of Alberta, Canada.

Citation
Gomes, C. G., & Boisvert, J. & Deutsch, C.V. (2022). Gaussian Mixture Models. In J. L.

Deutsch (Ed.), Geostatistics Lessons. Retrieved fromhttp://www.geostatisticslessons.com/lessons/gmm

GeostatisticsLessons.com©2022 C. Gomes and J. Boisvert and C.V. Deutsch 8

https://doi.org/10.1016/j.neucom.2017.06.053
http://geostatisticslessons.com

	Introduction
	Gaussian Mixture Model (GMM)
	Implementation Details
	Applications in Geostatistics
	Discussion
	References

