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Learning Objectives

• Understand how to draw an error ellipse (or density contour) of a bivariate
Gaussian distribution considering a given confidence level.

• Derive the equations for combiningmultivariateGaussiandistributions through
error ellipses.

• Appreciate the error ellipses method using a simulated bivariate Gaussian
dataset.

1 Introduction

The combination of probability distributions is a common challenge encountered in ge-
ology, engineering, and statistics. The distributions come from different data sources
or sensors. The distributions could be univariate, bivariate or multivariate. The tech-
niques to combine the distributions include (1) formulating and parameterizing a high
dimensional distribution fromwhich conditional distributions can be computed - called
cokriging in geostatistics (C. V. Deutsch & Journel, 1998; Doyen, 1988) (2) considering a
knownprior distribution andmaking a neutral assumption about the redundancy in the
information content - called collocated cokriging or Bayesian Updating in geostatistics
(Doyen, Boer, & Pillet, 1996; Xu, Tran, Srivastava, & Journel, 1992), and (3) consider-
ing no prior distribution and conditional independence in the likelihood distributions -
called Error Ellipses in the literature (Blachman, 1989). This Lesson aims to develop the
latter technique.

There is a reasonably informed prior distribution in most spatial prediction prob-
lems; it comes from a careful choice of a stationary population and declustering of the
available data. The error ellipses method would not be appropriate. There are situ-
ations, however, where there is no prior and the data sources are very different; the
error ellipses technique is useful when the convex estimation of the probability distri-
bution is required. For example, the horizontal variogram calculated from a few wells
are highly uncertain, whereas the horizontal variogram calculated from dense seismic
informationwould bemore structured but noisier. The estimation of the horizontal var-
iogram from the wells can be improved by combining the distributions of the squared
differences from wells and seismic information for each lag (Rezvandehy, 2016). In this
Lesson, the construction of the confidence ellipse of a bivariate Gaussian distribution is
first reviewed. The error ellipse method and derivation of its equations are explained,
and the method is demonstrated using a simulated bivariate Gaussian dataset.

GeostatisticsLessons.com©2020 O. Erten and C.V. Deutsch 1

http://geostatisticslessons.com


2 Multivariate Gaussian Distribution

Probability Density Function

Consider a p × 1 random vector X = [X1, ..., Xp]
T that has a multivariate Gaussian

distributionX ∼ Np(µ,Σ). Its probability density function is given as follows:

f(X|µ,Σ) = 1

(2π)p/2|Σ|1/2
exp

{
−1

2
(X− µ)TΣ−1(X− µ)

}
where p is the dimension of the vector; µ is the p×1 vector ofmeansµ = [µ1, ..., µp]

T ,
and Σ is the p× p positive definite covariance matrix Σ ofX:

Σ =


σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p

...
...

. . .
...

σp1 σp2 · · · σpp


If a random vector X is multivariate Gaussian, each random variable of X is also

Gaussian. If ρ = 0, that is, Σ is of a diagonal matrix (all off-diagonal elements are zero),
the multivariate Gaussian distribution is equal to p number of univariate Gaussian dis-
tributions (Johnson & Wichern, 1988).

3 Density Contours of a Bivariate Gaussian Distribution

The plot of the density (or probability) contours of a bivariate Gaussian distribution
represents a three-dimensional surface. The constant probability contours, however,
can be plotted on a two- dimensional format by considering the same height on the z-
axis (or the constant height of the surface). Consider that a random vectorX = [X1, X2]
has a bivariate (p = 2) Gaussian distribution. The scalar quantity of the square of
the distance (X − µ)TΣ−1(X − µ) = K is referred to as the Mahalonobis distance of
the vector X to the mean vector µ. The surface on which the random variable K is
constant is an ellipse (or a p-dimensional ellipsoid in the multivariate case) centered
at µ = [µ1, µ2]. This ellipse (or a probability contour) defines the region of a minimum
area (or volume inmultivariate case) containing a given probability under the Gaussian
assumption. Figure 1 illustrates confidence (error) ellipses with different confidence
levels (i.e. 68%, 90%, 95%), considering the cases where the random variables are (1)
positively correlated ρ > 0, (2) negatively correlated ρ < 0, and (3) independent ρ = 0.

This figure shows how the ranges (or lengths) and directions of the axes of the el-
lipses change depending on the selected confidence level and the covariance matrix
of the random vectorX. The confidence ellipses constructed based on the given confi-
dence levels can be used to check the bivariate Gaussianity of a given distribution (J. L.
Deutsch & Deutsch, 2011).

Step 1: Selecting a probability level for the error ellipse
The quadratic form defining the scalar random variableK has a chi-square distribution
χ2
2(α) with two degrees of freedom:

P
{
K ≤ χ2

2(α)
}
= P

{
(X− µ)TΣ−1(X− µ) ≤ χ2

2(α)
}
= 1− α

where χ2
2(α) is the upper (100α)th percentile of the χ2-distribution with two degrees

of freedom. 1−α is the probability (or a confidence level) that the value of the random
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Figure 1: Confidence ellipses representing different confidence levels

vector X will be inside the ellipse. For example, consider that the given probability is
α = 0.05, that is, χ2

2(0.05) = 5.99, then the 95% confidence ellipse is defined by:

P
{
K ≤ χ2

2(0.05)
}
= P

{
(X− µ)TΣ−1(X− µ) ≤ 5.99

}
= 0.95

Step 2: Calculating the eigenvalues of the covariance matrix

The positive definite (|Σ| ̸= 0 and Σ−1 exists) covariance matrix Σ of the random vector
X = [X1, X2] is as follows:

Σ =

[
σ11 σ12

σ21 σ22

]
The eigenvalues λ = [λ1, λ2] of Σ are calculated by:

λ1 =
1

2

[
σ11 + σ22 +

√
(σ11 − σ22)2 + 4σ11σ22ρ2

]
λ2 =

1

2

[
σ11 + σ22 −

√
(σ11 − σ22)2 + 4σ11σ22ρ2

]
where σ11 and σ22 are the variances of the random variablesX1 andX2, and ρ is the

linear correlation coefficient.

Step 3: Calculating the lengths of the ellipse axes

The lengths of the ellipse axes are a function of the given probability χ2
2(α), the eigen-

values λ = [λ1, λ2] and the linear correlation coefficient ρ. For example, 95% confidence
ellipse is defined by:

[X1 − µ1 X2 − µ2] Σ
−1

[
X1 − µ1

X2 − µ2

]
≤ χ2

2(0.05)

As Σ denotes a symmetric matrix and σ11 ̸= σ22, the eigenvectors of Σ is linearly
independent (or orthogonal). Therefore, Σ can be written as follows:

Σ = TDT−1

where T = [υ1|υ2] are the eigenvectors of Σ and D is the diagonal matrix of the
eigenvalues λ = [λ1, λ2]:
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D =

[
λ1 0
0 λ2

]
replacing Σ−1 by TD−1T−1, the square of the difference can be written as:

[X1 − µ1 X2 − µ2] TD
−1T−1

[
X1 − µ1

X2 − µ2

]
≤ χ2

2(0.05)

Denoting [
ω1

ω2

]
= T−1

[
X1 − µ1

X2 − µ2

]
As TT = T−1, the square of difference can be expressed as:

[ω1 ω2]

[
λ1 0
0 λ2

]−1 [
ω1

ω2

]
≤ χ2

2(0.05)

If the above equation is further evaluated, The resulting equation is the equation of
an ellipse aligned with the axis ω1 and ω2 in the new coordinate system.

ω2
1

χ2
2(0.05)λ1

+
ω2
2

χ2
2(0.05)λ2

≤ 1

The axes of the ellipse are defined by ω1 axis with a length 2
√
χ2
2(0.05)λ1 and ω2 axis

with a length 2
√
χ2
2(0.05)λ2.

When ρ = 0, the eigenvalues are equal to λ1 = σ11 and λ2 = σ22. Also, T matrix
whose elements are the eigenvectors of Σ becomes an identity matrix. The final equa-
tion of an ellipse is then defined by:

(X1 − µ1)
2

χ2
2(0.05)λ1

+
(X2 − µ2)

2

χ2
2(0.05)λ2

≤ 1

It is clear from the equation given above that the axes of the ellipse are parallel
to the coordinate axes. The lengths of the axes of the ellipse are then defined as
2
√
σ11χ2

2(0.05) and 2
√
σ22χ2

2(0.05). Figure 2 displays 95% confidence ellipses drawn
when the variables are positively correlated and when they are independent.

It is clearly seen from Figure 2 that when ρ > 0, the axes of the ellipse are aligned
with the rotated axes in the transformed coordinate system, and when ρ = 0, axes of
the ellipse are parallel to the original coordinate system.

4 Error Ellipses Method

The error ellipses method, first introduced by (Blachman, 1989), aims to combine in-
dividual probability distributions by the linear weighted averaging of the means. The
optimal weighting minimizes the resulting variance of the combined distribution:

Cx =

[
n∑

i=1

C−1
i

]−1

where Cx is the minimized covariance matrix of the combined probability distribu-
tion, and C−1

i is the covariance matrix of the individual probability distributions. The
estimated mean vector of the combined distribution is then defined by:
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Figure 2: 95% confidence ellipses and their semi-diameters when ρ > 0 and ρ = 0

x = Cx

[
n∑

i=1

C−1
i xi

]
where x is the mean of the combined probability distribution.

Derivation of the Error Ellipse Equations-1D Case
Consider that {xi; i = 1, ..., n} are the means of n number of probability distributions,
and {σ2

i ; i = 1, ..., n} are the corresponding variances of these probability distributions.
The unbiased estimate of the mean of the combined probability distribution is defined
by:

x =

n∑
i=1

λixi

n∑
i=1

λi

The variance of the estimate x can be written as:

V ar[x] =

n∑
i=1

[
λi/

n∑
i=1

λi

]2
V ar[xi]

Recall that V ar[x] = E[x2] − {E[x]}2. Differentiating the equation given above with
respect to λj guarantees the condition for the variance to be minimum:

λjV ar[xj ] =

n∑
i=1

λ2
iV ar[xi]

n∑
i=1

λi
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The right hand side of the equation does not depend on j and therefore, λj is pro-
portional to 1/V ar[xj ]. Substituting these weights into the first and second equations
given above yields:

x =

[
n∑

i=1

V ar[xi]
−1

]−1 n∑
i=1

V ar[xi]
−1xi

V ar[x] =

[
n∑

i=1

V ar[xi]
−1

]−1

Finally, themean of the combined distributionwith theminimized variance can then
be defined by:

x = V ar[x]

n∑
i=1

V ar[xi]
−1xi

Derivation of the Error Ellipse Equations in a Multivariate Case
Considerm independent sets of observations,O = [O1, ..., Om] of the same target. Each
observation Oi, i = 1, . . . ,m is an individual estimate of the target. The error ellipse of
each observation is a contour of the Gaussian conditional probability density function
P (x, y|Oi) of the target (Blachman, 1989). Considering the Bayes’ theorem, for which
the readers could refer to the lesson by (C. V. Deutsch & Deutsch, 2018), the aforemen-
tioned posterior distribution based on one set of observation can be defined by:

P (x, y|Oi) =
Pi(x, y) ∗ P (Oi|x, y)

P (Oi)

Provided that Pi(x, y) is constant over the area of interest, the posterior distribution
can be defined by:

P (Oi|x, y) =
P (Oi) ∗ P (x, y|Oi)

Pi(x, y)

Assuming that each posterior distribution P (Oi|x, y) is independent, the total con-
ditional probability over all observations, P (O1, . . . , Om|x, y) can then be defined as the
product of individual posterior distributions P (Oi|x, y), that is,

P (O1, . . . , Om|x, y) =
m∏
i=1

P (Oi) ∗ P (x, y|Oi)

Pi(x, y)

The conditional probability of the target given all observations is defined by the
following function:

P (x, y|O1, . . . , Om) =
P (x, y)

P (O1, . . . , Om)
∗

m∏
i=1

P (Oi) ∗ P (x, y|Oi)

Pi(x, y)

Because the prior P (x, y) and Pi(x, y) are assumed to be constant over the area of
interest, they cancel out. P (Oi) and P (O1, . . . , Om) depend only on the observation
and are normalizing constants. Therefore, the conditional probability distribution of
the target given all observations are defined as follows:

P (x, y|O1, . . . , Om) = K ∗
m∏
i=1

P (x, y|Oi)
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Because P (x, y|Oi) is Gaussian, its conditional probability density function can be
defined by:

P (x|O1, . . . ,Om) = K ∗ exp

{
−1

2

m∑
i=1

(x−Oi)
TC−1

i (x−Oi)

}
where K is the scaling factor; x is the vector defining target location; Oi is the obser-
vation of x and C−1

i is the covariance matrix of x. As with the 1-d case, the combined
variance will be minimum which will be achieved by differentiating the probability den-
sity function given above:

∂p

∂x
= K ∗ eEm

{
−1

2

∂Em

∂x

}
where Em is defined by:

Em =

m∑
i=1

(x−Oi)
TC−1

i (x−Oi)

∂Em

∂x
=


∂Em

∂x1
...

∂Em

∂xn


where m is the number of observations and n is the dimensionality of the vector x

and O. Consider the case where there is a single obervation, O1 then,

E1 = (x−O1)
TC−1

1 (x−O1)

=
[
x1 −O11 · · · xn −O1n

] B11 · · · B1n

...
...

Bn1 · · · Bnn


x1 −O11

...
xn −O1n


=

[
n∑

i=1

Bi1(xi −O1i) · · ·
n∑

i=1

Bin(xi −O1i)

]x1 −O11

...
xn −O1n


=

n∑
j=1

(xj −O1j)

n∑
i=1

Bij(xi −O1i)

Taking the derivative of the above equation with respect to x

∂E1

∂xk
=

n∑
i=1

Bik(xi −O1i) +

n∑
j=1

Bki(xj −O1j)

Because the indices i and j both sum to one, the entire equation can be written as
follows:
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∂E1

∂xk
=

n∑
i=1

Bik(xi −O1i) +

n∑
i=1

Bki(xi −O1i)

= 2

n∑
i=1

Bki(xi −O1i)

= 2C−1
1 (x−O1)

Setting the derivative to zero

2C−1
1 (x−O1) = 0

C−1
1 x−C−1

1 O1 = 0

x = O1

If only one set of observation Oi is considered, the best estimation of the target’s
location x will be equal to that obervation Oi (Orechovesky Jr, 1996). Expanding the
estimation by consideringm observations:

EM =

M∑
m=1

 n∑
j=1

(xj −Omj)

n∑
i=1

Bij(xi −Omi


=

M∑
m=1

(x−Om)TC−1
m (x−Om)

Taking the derivative of the above equation with respect to x

∂En

∂x
= 2

n∑
i=1

C−1
i (x−Oi)

Setting the derivative to zero

M∑
m=1

[
C−1
i (x−Om)

]
= 0(

M∑
m=1

C−1
m

)
x−

M∑
m=1

(C−1
m Om) = 0

1(
M∑

m=1
C−1
m

) ( M∑
m=1

C−1
m

)
x−

M∑
m=1

(C−1
m Om)

1(
M∑

m=1
C−1
m

) = 0

x−
M∑

m=1

C(C−1
m Om) = 0

Finally, the combined mean x and variance C are defined by:

x = C

M∑
m=1

(
C−1

m Om

)
, C =

(
M∑

m=1

C−1
m

)−1
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Figure 3: Histograms of the simulated variables

Example
Consider two bivariate Gaussian distributions, X,Y ∼ N(µ,Σ). The variables of these
random vectors are X = [X1, X2] and Y = [Y1, Y2]. The parameters of the aforemen-
tioned bivariate Gaussian distributions are µX = [4, 6], µY = [3, 8] and (2 × 2) positive
definite covariance matrices ΣX, ΣY are:

ΣX =

[
0.7 0.9
0.9 1.9

]
ΣY =

[
0.5 0
0 1.2

]
Based on the parameters given above, the variables, X1, X2 and Y1, Y2 were simu-

lated. Let {xk
1 , x

l
2; k, l = 1, ..., 800}be the simulated samples ofX1, X2, and {yk1 , yl2; k, l =

1, ..., 800} be the simulated samples of Y1, Y2. The histograms of the samples of the sim-
ulated variables are given in Figure 3.

The probability level (1 − 0.05 = 0.95), χ2
2(0.05) = 5.99 is first selected, as explained

in Step 1. This means that 95% probability that the values of the random vectorsX and
Y will be inside the ellipses. The eigenvalues (Step 2) of ΣX and ΣY are calculated to
be λX = [2.38, 0.22] and λY = [1.2, 0.5], respectively.

Considering the first bivariate Gaussian distribution defined by the random vector
X, the variables are positively correlated ρ = 0.78. Therefore, the axes of the ellipse
will point in the directions of the eigenvectors (Step 3). The eigenvectors of ΣX are
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Figure 4: 95% confidence ellipses of the bivariate Gaussian distributions

calculated to be υ1 = [0.88, 0.47]T and υ2 = [0.47,−0.88]T . The lengths of the ellipse
axes are calculated to be (2

√
5.99 · 2.38 = 7.55), (2

√
5.99 · 0.22 = 2.3). The axes of the 95%

confidence ellipse of the randomvectorX are then defined by±
√
5.99 · 2.38·[0.88, 0.47]T

and ±
√
5.99 · 0.22 · [0.47,−0.88]T .

Considering the second bivariate Gaussian distribution defined by the random vec-
tor Y, the variables are independent. The eigenvalues of ΣY are equal to the vari-
ances of Y1 and Y2, respectively. As explained in Step 3, the axes of the ellipse are
parallel to the original coordinate axes. The lengths of the axes are calculated to be
(2
√
5.99 · 1.2 = 5.36), (2

√
5.99 · 0.5 = 3.46. The axes of the 95% confidence ellipse of the

random vector Y are then defined by ±
√
5.99 · 1.2 · [0, 1]T and ±

√
5.99 · 0.5 · [1, 0]T . The

95% confidence ellipses for the given bivariate Gaussian distributions are displayed in
Figure 4.

The variance Cx of the combined probability distribution is calculated as follows:

Cx =

([
0.7 0.9
0.9 1.9

]−1

+

[
0.5 0
0 1.2

]−1
)−1

Cx =

[
0.23 0.19
0.19 0.61

]
and the mean vector of the combined distribution x is then defined by:

x =

[
0.23 0.19
0.19 0.61

]([
0.7 0.9
0.9 1.9

]−1 [
4
6

]
+

[
0.5 0
0 1.2

]−1 [
3
8

])

x =

[
3.84
6.64

]
GeostatisticsLessons.com©2020 O. Erten and C.V. Deutsch 10

http://geostatisticslessons.com


Figure 5: 95% confidence ellipses of the bivariate Gaussian distributions and the com-
bined distribution

Based on the estimated variance Cx and the mean x, the bivariate Gaussian vari-
ables are simulated. 95% confidence ellipse of the combined distribution is given in
Figure 5.

5 Summary

The error ellipses method combines probability distributions by a linear combination.
The combined probability distribution is a convex estimation of the mean of the com-
bined distribution, that is, the estimated mean of the combined distribution always
falls between the means of the input probability distributions; the lower variance dis-
tribution has the greatest influence. This method is especially useful when there is no
clear prior distribution, for example, in the estimation of parameters from diverse data
sources. Themethod should not be used for spatial predictionwhen a reasonable prior
model is available.
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