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Learning Objectives

+ Review the workflow of conditioning by kriging
* Prove that conditioning by kriging satisfies the requirements of conditional
simulation and provides valid conditional realizations

1 Introduction

Kriging estimation provides the best linear estimate as close as possible to the true un-
known value. In kriging, the minimization of the estimation variance involves smooth-
ing the true variability. Kriged estimates honor local data yet the smoothness makes
the result inappropriate for transferring uncertainty to calculated response values (e.g.,
flow simulation). In addition, kriging gives one unique answer, so it is not able to quan-
tify uncertainty. We use simulation to reproduce the variogram and histogram and
provide a model of global uncertainty that considers the correct spatial correlation be-
tween the simulated values. Simulation samples alternative realizations from a condi-
tional multivariate distribution.

In unconditional simulation, each realization is a sample from the multivariate dis-
tribution with the correct variance and the correct covariance between all spatial lo-
cations. The unconditional simulation will reproduce the histogram and the spatial
variability (variogram) over many realizations. There are an infinite number of possible
unconditional realizations, among which the simulations that honor the experimental
data values are chosen (Journel & Huijbregts, 1978).

There are two approaches to conditionally simulate from a multivariate distribution.
One approach is direct conditional simulation such as sequential simulation, the sec-
ond is the traditional approach of conditioning unconditional simulated realizations. In
this lesson, the procedure of enforcing data reproduction and enforcing correct local
conditional distributions, referred to as conditioning, is explained. Conditioning by krig-
ing is of theoretical and practical interest and is used in many places instead of direct
methods. Conditioning by kriging primarily provides easier routes to increase compu-
tational speed, the ability to use alternative techniques to generate the unconditional
realizations, and the ability to independently check and verify histogram/variogram re-
production prior to conditioning. In this lesson, itis proved that this procedure satisfies
the requirements of a conditional simulation and thus is a correct approach to condi-
tion unconditional realizations.

2 Assumptions

Consider n conditioning data sampled as random variables Z(u,),a = 1,...,n. The
set of all random variables at n sampled and N unsampled locations, referred to as
a random function (RF), Z(u),Vu € A, are assumed to belong to the same stationary
domain A.
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The (n + N)-variate multivariate probability distribution of the RF fully defines the
heterogeneity and uncertainty. The simplifying assumption is to use the tractable multi-
variate Gaussian (MG) distribution as a distribution thatis simply and fully parametrized
by a vector of n+ N mean values and a (n+ N) x (n+ N) covariance matrix. Therefore,
the sampled data are transformed to a standard normal Gaussian distribution and ev-
erything is back transformed at the end( see the lesson on normal score transform.

The mean value over the domain, m, is stationary and constant at zero. The variance,
o2, is stationary and constant at one everywhere.The covariance matrix is informed by
a stationary covariance model, C(h), or variogram model, v(h), of the normal scores
variables for all possible lag vectors, {h = u —u’,u,u’ € A}.

3 Conditional Simulation and Simple Kriging

Simple kriging (SK) under a MG assumption is equivalent to the normal equations de-
rived by Bayes’ theorem that calculates the conditional distribution moments in se-
quential Gaussian simulation (Leuangthong, Khan, & Deutsch, 2011). The SK estimate,
Zsk(u), and the SK estimation variance, 0% (u), are the parameters of the conditional
Gaussian distribution at location u, that is, they are equivalent to the conditional mean,
m.(u), and the conditional variance, #2(u), given the available data.

me(u) = Zgg(u) = Z Aa(W)Z(uy) (1)

or(u) = 0%x(w) =1-) A(u)C(u—u,) (2)

SK provides the theoretically correct conditional mean and variance. For each un-
sampled location, u, the SK equations provide the weights A\, (u),a =1, ..., n:

Z As(u)C(uy —ug) =Clu—u,),a=1,...,n (3)
p=1

4 Conditioning By Kriging (CBK)

The first step in carrying out the conditional simulation is to provide an unconditional
simulation, Z,s(u),Yu € A, having the stationary mean and covariance function be-
tween all locations. Many methods are available for simulating unconditional realiza-
tions, such as turning bands that provides multidimensional simulations for reduced
computer costs of one-dimensional simulations (Chiles & Delfiner, 2009). The provided
unconditional simulation is conditioned to the experimental data values using the con-
ditioning by kriging (CBK) method.

As shown in Eq.2, the kriging error variance is independent of conditioning data and
only depends on the spatial configuration of the conditioning data, hence, the kriging
procedure, when applied to the identical data configuration, will resultin a same kriging
error.

Therefore, given Zsk(u), kriged from the conditioning data, {Z(u,),a = 1,...,n},
and Z,y, 4s(u), kriged from the unconditionally simulated values retained at the loca-
tions of the conditioning data, {Z.;s(u.),a = 1, ...,n}, the simulated deviation from krig-
ing is written:
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[Zus(u) — Zsk,uS(u)]
The desired conditional simulation, Z.,(u), is written as

Zes(u) = Zsk () + [Zys(u) — Zsk,uS(u)]
The terms could be reordered for an alternative view of CBK:

ch (u) = Zus(u) + [ZSK(U) - Zsk,us(u)]

n

= Zus(u) + [ D Aa(W)Z(ua) = Y Aa(1) Zus (1)

a=1

= Zus) + 3 Aa(0)[Z(00) — Zus (1)
a=1

This view shows that, Z.;(u) can be obtained by (1) performing an unconditional
simulation to obtain Z,s(u), (2) calculate residuals that are the difference between un-
conditional simulated values retained at the data locations and the original data values
themselves, (3) interpolate this residual with simple kriging to get Z,,(u) — Zgj us(u),
and (4) add the resulting kriged field to the unconditionally simulated field to obtain
the conditional simulated values at all locations.

Note that for either view, the kriging setup for CBK is simple kriging with a large
search, all of the samples that influence the kriged estimates (25 to 50) and a var-
iogram consistent with the data and the unconditional simulation. The kriging esti-
mates, Z ,s(u) and Zgk (u), as well as Z,s(u) must use the same normal scores vari-
ogram. The corresponding covariance function C'(h) = 1 — v(h) is used in kriging, sim-
ulation and theoretical development. Because of the exactitude property of kriging,
Z.s(u) honors the data at the data locations.

5 Theory of CBK

CBK requires valid unconditional simulation that correctly satisfies the stationary limit
properties. The unconditional simulation has the stationary mean of zero and the sta-
tionary covariance function, C(h), between all locations (Chiles & Delfiner, 2009; Jour-
nel, 1989).

(Johnson & Wichern, 2008) prove that conditional Gaussian distributions are defined
by the following properties,

i. Mean =m¢(u), VueA
ii. Variance = o%(u), Vue A
iii. Covariance = C(u—u') =320 370 Aa(WAs(u)C(us —ug), Vu,u' € A

where the conditional mean, m.(u), and the conditional variance, #%(u) were intro-
duced in Eq.1 and Eq.2.

These are three requirements that conditional realizations must satisfy. Beyond
this, the shapes of all distributions must be Gaussian, but this is enforced by the central
limit theorem. The proof that CBK satisfies these requirements is provided below. The
relation in Eq.6 as derived below is useful for the proof;
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The kriged estimate is too smooth because its variance is too small. This is proved
that the missing variance is the SK estimation variance. The variance of kriged estimate
equals to the stationary variance minus the SK estimation variance:

var{me(u)} = E{mZ(u)} — [E{mc(u)}]”

g

=" NaMsE{Z(ua)Z(ug)} — lz oE{Z(u,) 1

a=18=1

a=1p=1

var{m.(u)} = Z Z AaAgC(uq —ug) (4)

a=1p=1

Substituting, Eq.3, into Eq.2 results in,

S-S A ) @

Substituting Eq.5 into Eq.4 results in,
var{m.(u)} =1— ag(u) (6)
1. Conditional Mean

Mean of Z.s(u) at each simulated location equals to the conditional mean at that
location:

E{Zcs(w)} = E{Zsk(u) + [Zus(0) — Zsp,us(0)]}

=Zg(u)+ E {ZuS(u)} -E {Zsk,uS(u)}
Substituting, F {Z,s(u)} =0,

=Zsg(u)— FE {Z )\aZus(ua)}

= Zg(u Z,\ E{Z.s(u,)}

a=1
E{Z.(0)} = Zg(u) =m.(u) Vue A
2. Conditional Variance

The variance of Z.;(u) at each simulated location equals the conditional variance at
that location:

var{Z.(w)} = F {[ch(u) - F {ch(u)}]z}
= E{[Zes(w) = Zop(w))’}
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= E{[Zob(w) + Zus (@) = Zops(0) = Za(w)] }
= B{[Zus(0) = Zuus(w)]’ |

= B{[Zus(@) } =28 {Z0s(0) Zups ()} + E { [ Zurs (0]}

Substituting, £ {[zsk,us(u)]Q} — 1-02(u) (as proved in Eq.6) and substituting E {[Zus(u)]Q} -
11

var {Zes(u)} =1-2 Z N E{Zys(0) Zys(1n)} + 1 — 0%(u)

=1-2) AC(uu,)+1-0Z(u)

a=1

=1-2(1-0(w)+1-0Z(u)

var {Zes(u)} = o2(u) = 0% (u)
3. Conditional Covariance

The covariance between two conditionally simulated points equals to the stationary
covariance model, C(h), minus the covariance between the conditioning data.

Zes(0) = Zgi(u) + [Zus(1) — Zgg us ()]
Zes(W) = Zsp (W) + [Zus (0') = Zsius (0')]
cov{Zes(0), Zes(W)} = E{[Zes(0) — E{Zes(W)}] [Zes(0') — E{Zes(u')}]}
= E{[Zes(0) = Zopp(0)] [Zes(0') — Zpo(0)]}
= E{[Zus(0) = Zokus(W)] [Zus (1) = Zopous (0')]}

= {Z,,,s(u)Z“,,.(u/) - ZHS(u)Zsk,US(u/) + Zsk-,’u/s(u)Zskf.,’urs (u/)} (7)

Given that Zy, us(u) = >0 Aa(W)Zys(ua) and Zgg us(u') = Yoo Ao (W) Zys(ua),
Eqg.7 becomes,

cov{Z.s(n), Zes(W')} = Clu—u') —

n n n

_Z )\a(u/)E {ZuS(u)ZUS(ua)} + Z Z /\(y(u))\@(u/)E {Zus (u(y)Z“s(u‘g)}

a=1 a=1 =1
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n n

+ZZ/\” )C(u, —ug)

a=1 =1

Given that,

Z Ag(u)C(uy —ug) =C(u—u,), Yu,

B
Z As(u)C(up —ug) =C(u —u,), Vu,
B=1

cov{Z.s(0), Zes(u')} = Clu —u') —

n n

_ZZ)‘a(u/)Aﬁ(u) o —ug) Zz)‘ C(ua —up)

a=1p=1 a=1 =1
cov{Z.s(a), Zes(0')} = Clu—1u') Z Z)\ )C(uy —ug) Vu,u' €A
a=1 =1

This proves that in presence of the conditioning data, the covariance between two
conditionally simulated points is (1) correct-see above, and (2) less than the station-
ary covariance. It is also intuitively accepted because conditioning to data constrains
the uncertainty. Thereby, conditional simulation does not exactly reproduce the input
variogram model.

6 Examples

To illustrate the CBK steps of making conditional simulations using simple kriging, a
one-dimensional and a two-dimensional example of several realizations are explored
below. In the given dataset the spatial random variable is top elevation of a reservoir
surface.

The following figure shows CBK conditional simulation obtained by an unconditional
sequential Gaussian simulation (SGSIM), SK of conditioning data points and SK of un-
conditionally simulated values at these data locations.

Readers using a web-browser may use the slider at the bottom to view different
realizations.

In the 1D example shown in the above figure, the plots illustrate steps outlined in
the first view of CBK. In this dataset, there are five well data points stochastically dis-
tributed in the first half of the domain length of 1000m and no conditioning data in the
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right side. With the last data point at 500m, it has influense up to 500m plus range of
about 200m and thus on the far of right side, the SK model at distances greater than
the range is equal to the global mean of zero and the residual is zero. Therefore, the
conditional relization becomes exactly the same as the unconditional realization which
does not meet the heterogeneity of the inaccessible truth phenomenon from which
the five conditioning data were sampled.

In the first half of the domain, compared to the kriging estimation curve, the condi-
tioned simulation curve by CBK is a better reproduction of fluctuations of the unknown
truth.

The Kriged estimates from the conditioning data and from unconditionally simu-
lated values at data locations exactly honor the data values and unconditional values
respectively.

The next Figure illustrates a 2D example. The maps of kriged estimates minimize
the square variance and thus are rather smooth compared to the simulation maps. Al-
though the variogram modeled from the conditioning (reference) data is used to make
a kriging estimate, the variogram of the kriged estimates would not reproduce the ref-
erence variogram.

7 Conclusion

The marginal distributions of our MG distribution are standard normal Gaussian; how-
ever, the conditional distributions of MG at the unsampled locations conditioned to
data are not standard Gaussian because of the conditioning by data, but they are still
Gaussian. As a result, the unconditional simulation will reproduce the stationary mean
of zero, the stationary variance of one and the stationary covariance model, thus ex-
actly reproduces the input variogram model produced by the conditioning data. How-
ever, when we condition them to the data, due to honoring the conditional data, the
conditional variance at data points is zero and it increases away from data. Therefore,
unconditionally simulated realizations satisfy stationary limit properties and the con-
ditional simulation obtained by CBK satisfies the correct conditional properties and is
theoretically correct.

At each grid node, the CBK procedure is repeated with many alternative uncondi-
tional realizations in order to provide many conditional realizations. The kriging weights
calculated for each grid node are independent of data values (and unconditionally sim-
ulated values) and only depend on the spatial configuration of the data and grid node,
hence, the kriging weights do not change for all realizations at each grid node. Thereby,
computational efficiencies could be gained by saving the weights or processing multi-
ple realizations simultaneously.

On the other hand, formulating the kriging in a dual formulation is very efficient
and is highly recommended for the conditioning, because then the kriging equations
are solved once and it is very fast. However, it would have to be solved again for each
realization since the unconditionally simulated values are embedded in the dual kriging
weights. A dual formalism to the SK system is an alternative formulation where the
dual kriging weights are independent of spatial configuration of grid nodes and only
depend on the spatial configuration of data and data values. Instead of being a linear
combination of the n data (Z(u,)m), the dual SK estimate is formulated as a linear
combination of n data-to-unknown covariance functions, C'(u — u,).
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Figure 1: SK of conditioning data points honoring the conditioning data points sampled
from the unknown truth, SK of unconditionally simulated values at these data locations
honoring the unconditional data points derived from Unconditional SGSIM, and Uncon-

ditional SGSIM are used to obtain the CBK conditional simulation.
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