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Learning Objectives

• Review cokriging.
• Understand the development of the Markov Models.
• Demonstrate (intrinsic) collocated cokriging with Markov model II
• Understand a workflow for collocated cokriging (source code available).

1 Introduction

Consider two coregionalized variables Z(u), the primary variable, and Y (u), the sec-
ondary variable where u refers to locations in a stationary domain. The primary vari-
able Z(u) is sampled at n locations. The secondary variable Y (u) is measured at all
locations within the domain. The Y (u) variable is used to inform the prediction of Z(u).
Only one secondary variable is considered for this lesson; if multiple secondary vari-
ables are present, the simplest solution is to aggregate secondary variables into one
super secondary variable (see the lesson on supersecondaries). The complete imple-
mentation is demonstrated in an accompanying Python notebook.

Cokriging uses the resulting aggregated super secondary variable (Yang & Deutsch
(2019)). Traditionally cokriging with a linear model of coregionalization (LMC) is used
in multivariate estimation; however, due to the complexity of the cokriging workflow,
other techniques were developed for scenarios with exhaustively sampled secondary
data. Collocated cokriging simplifies estimation by using an intrinsic model and the col-
located secondary data. This lesson will explain and compare the different methods of
collocated cokriging. To help simplify the lesson it will be assumed that the variables
Z(u) and Y (u) have been standardized or normal score transformed and have a mean
of zero and a standard deviation of one (see the lesson on the normal score transfor-
mation).

Correlogram Review
The spatial variability of the primary, secondary, and between the primary and sec-
ondary variables must be considered. The spatial variablity is described by the vari-
ogramor correlogram (see the lesson on the pairwise relative variogram). It is assumed
that the variables are stationary. The correlogram for Z(u) can be defined as:

ρz(h) = E [Z(u)Z(u+ h))]

where h is a lag vector, similarly the correlogram for Y (u) can be defined as:

ρy(h) = E [Y (u)Y (u+ h))]

The cross-correlogram can be defined as:

ρzy(h) = E [Z(u)Y (u+ h))]
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For example, the cross-correlogram can be estimated in this fashion:

ˆρzy(h) =
1

N(h)

N(h)∑
i=1

Z(ui)Y (ui + h)

where N(h) pairs of samples are separated by the lag vector h (note that bold vari-
ables represent a set of values). The direct Z and Y correlograms are estimated in a
similar fashion. Note that the correlogram can capture the lag effect,that is, ρzy(h) ̸=
ρyz(h).

A linear model of coregionalization could be used to model spatial continuity of the
variables. The LMC is modeled with the same pool of nested structures and must be
modeled to ensure that the resulting kriging matrix is positive definite. The LMC can
be denoted as:

ρz(h) = 1−
nst∑
k=0

bkzC
k(h)ρy(h) = 1−

nst∑
k=0

bkyC
k(h)ρyz(h) =

nst∑
k=0

bkyzC
k(h)

Where:
Ck(h) are the pool of k = 0, ..., nst structures, where the 0th nested structure is the

nugget effect by convention
bk is the contribution of each structure
In a LMC the bk coefficients may vary, but they are constrained to yield a positive

definite model:

bkz × bky ≥ (bkyz)
2 k = 0, ..., nst

More on LMC’s can be found in Goulard & Voltz (1992).

Simple Cokriging Review
Simple Cokriging (SCK) is an extension of kriging for modeling multivariate problems.
SCK considers the primary and secondary data available. SCK does not require equal
sampling of the primary and secondary data which is an advantage over many other
multivariate techniques. The equations for SCK:

Z∗(u0) =

n∑
α=1

λZ,αZ(uα) +

ny∑
α=1

λY,αY (uα)

The system of equations to solve for the SCK weights:
∑n

α=1 λZ,αρz(uα − uβ) +
∑ny

α=1 λYαρyz(uα − uβ) = ρz(uβ − u0)
β = 1, ..., n∑ny

α=1 λZ,αρyz(uα − uβ) +
∑n

α=1 λYαρy(uα − uβ) = ρyz(uβ − u0)
β = 1, ..., ny

Where:
ρz(uα − uβ), α, β = 1, ...n are the spatial correlations between primary data calcu-

lated based on the ρz(h) correlogram
ρyz(uα−u0) and ρyz(uα−uβ)α, β = 1, ...n are the spatial cross-correlations between

primary and secondary data calculated based on the ρyz(h) cross correlogram
ρy(uα − uβ) is the spatial correlation between the secondary data calculated based

on the ρy(h) correlogram
λZ,α is the kriging weight for the αth primary data sample for α = 1, ...n
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λY,α is the kriging weight for the αth secondary data sample for α = 1, ...ny

Cokriging is very useful; however, calculating, interpreting, and fitting the correlo-
grams required for an LMC could be tedious. If the secondary data are exhaustively
sampled, we are motivated to simplify the estimation (Rossi & Deutsch (2014)).

2 The Markov Models

Collocated cokriging and theMarkovmodel I (MMI)were introduced as a simplermethod
of modeling multivariate geological problems in the presence of exhaustive secondary
data (Almeida & Journel (1994)). The MMI uses the primary correlogram and the cor-
relation between the primary and secondary data to infer all correlations. The Markov
model II (MMII) is a similar method; however, uses the correlogram of the secondary
variable, a residual correlogram, and the correlations between the secondary and pri-
mary data are needed to calculate all correlations.

Markov Model I
The Markov Model cross-correlogram is expressed as:

ρyz(h) = ρyz(0)ρz(h)

Where ρz(h) is the primary variable correlogram and ρyz(h) is the cross-correlogram
between the primary variable Z(h) and the secondary variable Y (h). ρyz(0) is the col-
located correlation coefficient.

The MMI does not require the correlogram of the secondary variable it is assumed
that:

ρy(h) = ρz(h)

The assumption is that ρyz(h) and ρz(h) have the same shape and continuity; how-
ever, the MMI can produce suboptimal results (Shmaryan & Journel (1999)).

Markov Model II
The Markov model II (MMII) was developed assuming that the secondary variable Y (h)
is more stable then the primary variable Z(h). The cross-correlogram is related to the
secondary correlogram:

ρyz(h) = ρyz(0)ρy(h)

The primary correlogram ρz(h) is then calculated with the secondary correlogram
ρy(h):

ρz(h) = ρ2yz(0)ρy(h) + (1− ρ2yz(0))ρr(h)

where ρr(h) is fit such that:

ρz(h) ≈ ρ̂z(h)

The key idea is that ρ2yz(0) is theminimum contribution of ρy tomaintain positive def-
initeness. The major difference between MMI and MMII is that the cross-correlogram
ρyz(h) in the MMI uses ρz(h) and the MMII uses ρy(h). Once the method of determin-
ing how to calculate the correlograms is established the next step is to determine the
kriging method to implement.
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Summary of the Markov Model Correlograms Calculations
A summary of the Markov Models is shown below.

Correlogram MarkovModel1 MarkovModel2
ρz(h) = ρz(h) ρ2yz(0)ρy(h) + (1− ρ2yz(0))ρr(h)
ρyz(h) = ρz(h)ρyz(0) ρy(h)ρyz(0)
ρy(h) = ρz(h) ρy(h)

3 Kriging

Simple Collocated Cokriging
Simple collocated cokriging (SCCK) is widely accepted in the practices of geostatistics
as an alternative to Cokriging with an LMC (Shmaryan & Journel (1999)). The equation
for SCCK is:

Z∗(u0) =

N∑
α=1

λαZ(uα) + λY0Y (u0)

where Z∗(u0) is the estimate at the unsampled location, Y (u0) is the value sec-
ondary variable at the estimation location and the λ’s are the kriging weights. The
kriging weights are solved from the following system of equations using MMI or MMII:{∑n

α=1 λZ,αρz(uα − uβ) + λY0ρyz(uβ − u0) = ρz(uβ − u0), β = 1, ..., n∑n
α=1 λZ,αρyz(uα − u0) + λY0 = ρyz(0)

Where:
ρz(uα−uβ), α, β = 1, ...n are the spatial correlation between primary data calculated

with the ρz(h) correlogram
ρyz(uα − u0), β = 1, ...n are the spatial cross-correlation between primary and sec-

ondary data calculated with the ρyz(h) correlogram
λα is the kriging weight for the αth primary data sample for α = 1, ...n
λY0 is the kriging weight for the secondary collocated data
Although simple collocated cokriging is a more straightforward workflow compared

to cokriging, there is a drawback. Simple cokriging results in variance inflation in the
estimation, and the estimate is less accurate than cokriging. The variance inflation is
due to the collocated system of equations not being an exact intrinsic model (Babak &
Deutsch (2007)). Using a true intrinsic model corrects variance inflation and improves
the results.

Intrinsic Collocated Cokriging
ICCK includes all secondary data from the primary locations and the collocated loca-
tion; the variance is more accurately reproduced and variance inflation does not occur
(Babak & Deutsch (2007)). The ICCK estimate is written:

Z∗(u0) =

n∑
α=1

λZ,αZ(uα) +

n∑
α=1

λY,αY (uα) + λY,0Y (u0)

The system of equations to solve for the ICCK weights is:

GeostatisticsLessons.com©2020 M. Samson and C. Deutsch 4

http://geostatisticslessons.com


Figure 1: Schematic of SCCK compared to ICCK.



∑n
α=1 λZ,αρz(uα − uβ) +

∑n
α=1 λYαρyz(uα − uβ) + λY0ρyz(uβ − u0) = ρz(uβ − u0)

β = 1, ..., n∑n
α=1 λZ,αρyz(uα − uβ) +

∑n
α=1 λYαρy(uα − uβ) + λY0ρy(uβ − u0) = ρyz(uβ − u0)

β = 1, ..., n∑n
α=1 λZ,αρyz(uα − u0) +

∑n
α=1 λYαρy(uα − u0) + λY0 = ρyz(0)

Where:
ρz(uα−uβ), α, β = 1, ...n are the spatial correlation between primary data calculated

with the ρz(h) correlogram
ρyz(uα−u0) and ρyz(uα−uβ), α, β = 1, ...n are the spatial cross-correlation between

primary and secondary data
λZ,α is the kriging weight for the αth primary data sample for α = 1, ...n
λY,α is the kriging weight for the αth secondary data sample for α = 1, ...n
λY0 is the kriging weight for secondary collocated data
Although ICCK solves the variance inflation issues, it requires almost double the

size of the matrix for solving the kriging weights; however, with today’s computational
power, this is not a significant problem.

The figure below illustrates the difference between SCCK and ICCK. In SCCK(left) only
the primary data(Z(u)), represented by open circles, and the collocated data(Y (u0)),
represented by a blue square, are used to calculate the estimate(Z∗(u0)), represent by
a tan circle. In ICCK(right), the primary data, the collocated data, and the secondary
data at all primary data locations (Y (u)), represented by red squares, are used to make
the estimate. The arrow in the diagrams would represent the correlogram lag distance
used to calculate the spatial correlation.

4 Example

To illustrate the four different methods of making an estimate using SCCK and ICCK
with MMI/MMII a 2D example is explored below (with source code in accompanying
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Figure 2: Primary data (left) and exhaustive secondary (right).

notebook).

Data
The figure below shows the primary data Z(u) on the left and the exhaustive secondary
data Y (u) on the right.

From the histograms and scatter plot below the data has a reasonably strong cor-
relation, ρyz(0), of 0.72. The mean and variance of the primary data is −0.42 and 1.00
respectively.The mean and variance of the secondary data is 0.20 and 1.00, respectively.
The data was sampled from a Gaussian simulation.

The next step is to model the correlogram of both the primary and secondary data.
From the exhaustive data map the major direction of continuity appears to be 90◦. In
MMI the primary correlogram ρzModel

(h) and the correlation is used to calculate the
correlations in the Kriging equations. In MMII the secondary correlogram ρyModel

(h)
and the correlation is used to calculate the secondary covariance and the cross covari-
ance. In MMII the primary covariance is fit using ρr(h) and the secondary correlogram
ρyModel

(h). The primary correlogram for theMMII is denoted as ρzMMII
(h) in the images

below. ρzMMII
(h) should be similar to ρzModel

(h).
The correlograms can be written as:

ρzModel
(h) = 1.00Gaussiana1maj = 24

a1min = 16

ρyModel
(h) = 0.9Spherical a1maj = 42

a1min = 28.5

+ 0.1Gaussiana2maj = 43
a2min = 30

Where the primary correlogram has one Gaussian structure with a range of 24 units
in the major direction (a1maj ) and a range of 16 units in the minor direction (a1min).
The secondary correlogram modeled has two structures; the first structure, Spherical,
contributes 90% of the correlogram with a major range of 42 units (a1maj ) and a minor
range of 28.5 units (a1min). The second structure, Gaussian, contributes the remaining
10% of the correlogram with a major range continuing to 42 units (a2maj ) and minor
range continuing to 30 units (a1min). More on variogram/correlogram structures can
be found in Deutsch (2003).
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Figure 3: Cross plot of primary and secondary data.

Kriging
Kriging is performedwith the 60 nearest data. The results fromall four Krigingmethods
and SK/SCK(as a reference) are below. As expected, all methods produce very similar
results; however, the MMII appears less smooth andmore similar to SCK then the MMI.

Modeling Checking

A reference truth, ZTrue(u), to this example is known, making it straightforward to
compare each estimation method. Comparing each estimate root mean squared er-
ror (RMSE) illustrates the relative performance. The RMSE measures the difference
between the true values and the predicted values:

RMSE =

√∑nsamples

i=0 (ZTrue(ui)− Z∗(ui))2

nsamples
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Figure 4: Major direction variograms.

The error between the estimate and truth is shown below. As expected SK performs
the worst and SCK performs the best; however, the ICCK MMII performs very similarly
to SCK due to the MMII correlograms being close to the LMC correlograms.

All methods are unbiased, smooth, and reproduce the distribution of the data rea-
sonably well.

For the example demonstrated above using the MMII with ICCK would be recom-
mended. Using MMII with ICCK results in almost the same results as SCK without the
difficulties involved with fitting a valid LMC. For this example, the data was simulated
using theMMII correlograms; hence, fitting theMMII correlogramswas straight forward
and results in a similar estimate to SCK. In practice, the MMII correlograms and LMC
might not always be the same. ICCK with MMI is widely used in practice.

5 Conclusion

The Markov model I was developed as a simpler method for multivariate spatial esti-
mation. The MMI uses the primary correlogram and the correlation between the pri-
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Figure 5: Minor direction variograms.

mary and secondary data to calculate the cross-correlogram. It is assumed that the
secondary correlogram is equal to the primary correlogram.

The Markov model II is used when the primary correlogram is not stable, or the pri-
mary data is sparsely sampled. The MMII uses the secondary correlogram and the cor-
relations between the primary and secondary data to calculate the cross-correlogram.
The primary correlogram is a combination of the secondary correlogram and a residual
correlogram for fitting.

Simple Collocated Cokriging is not a true intrinsicmodel leading to variance inflation
in estimation. Intrinsic Collocated Cokriging is used to eliminate the variance inflation
by including all the secondary data at the primary data locations used for the estimate,
not just the secondary data at the estimation location. Both MMI and MMII require ex-
haustive secondary data. For the example shown here, all four estimation techniques
result in reasonable estimations with the ICCK MMII performing the best. Bayesian up-
dating is another multivariate estimation technique that would produce similar results
to collocated simple kriging. More on Bayesian Updating can be found in the lesson
on Bayesian Updating for Combining Conditional Distributions and lesson on Bayesian
Mapping.
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Figure 6: Estimates by model type.
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Figure 7: Scatterplot of estimates with true data.
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