
Cokriging with Unequally Sampled
Data

Luis Davila1 and Clayton V. Deutsch2

1University of Alberta
2University of Alberta

Learning Objectives

• Review theory of standardized ordinary cokriging with unequally sampled
data

• Understand the application and workflow of standardized ordinary cokriging
• Compare results of ordinary kriging to standardized ordinary cokriging
• Understand how ordinary kriging compares to standardized ordinary cokrig-
ing in practice and how results are checked (source code available).

1 Introduction

Cokriging with unequally sampled data could be used with drill holes (resource and
reserve estimation drilling campaigns - exploration data) and blast holes (or other pro-
duction samples) to improve short- and medium-term models. Both data types com-
plement each other: (1) drill hole data for exploration and estimation stages typically
have better quality control than production sampling, and (2) production sampling is
more abundant and closely spaced than exploration data. There are many other sit-
uations where multiple data types or variables are available at different locations in-
cluding different vintages of sampling, different drilling types (reverse circulation and
diamond drilling) and relatively inexpensive chip or channel samples together with drill
hole data.

Cokriging is recommended when the data types are at different locations. This is
sometimes referred to as heterotopic data. When multiple variables are measured at
the same locations (equally sampled, or homotopic data) kriging can be used to esti-
mate each variable one at the time. Decorrelation techniques can facilitate simulation
of homotopic data, techniques like Projection PursuitMultivariate Transform (Barnett &
Deutsch, 2017) have been presented in previous lessons and the reader is encouraged
to review them at GeostatisticsLessons.com. Cokriging optimally combines multiple
data types accounting for error, bias and different support of the measurements (Min-
nitt & Deutsch, 2014). This lesson will present standardized ordinary cokriging for drill
holes and blast holes. In practice, any number of data types could be considered and
the approach could be applied in a non-mining context.

An essential component of cokriging is to have a valid Linear Model of Coregion-
alization (LMC) for the direct and cross variograms. For the drill hole and blast hole
example considered in this Lesson, there are two direct experimental variograms: one
for the drill hole data and one for the blast hole data. There is also a cross-covariance
between the drill hole and blast hole data. This cross covariance is made to look like a
cross variogram for the conventional practice of variogram fitting. In the end, there are
three variograms in three directions that must be fit simultaneously for a valid LMC to
solve the cokriging equations.
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Multiple elements measured in the drill hole and blast hole data will significantly
increase the number of variograms required and automatic fitting would be required.
In an estimation context, each variable could be considered separately unless they are
correlated and one or more are undersampled relative to the rest.

2 Theory

Consider two variables: (a) Primary variable fromexplorationdata {Z (uα) ,where: α = 1, . . . , nZ},
and (b) Secondary variable fromproduction sampling:

{
Y
(
u′
β

)
,where: β = 1, . . . , nY

}
.

Primary and secondary data will be used to characterize the spatial variability. Both
variables are standardized to have a mean of zero and a variance of one by subtracting
the mean and dividing by the standard deviation (Rossi & Deutsch, 2013). The station-
ary domains have been previously defined for different zones of the mineral deposit.
The variables are standardized:

Zstd =
Z (u)−mZ

σZ
Ystd =

Y (u)−mY

σY

(1)

After the estimation is complete, the values can be back transformed to original
units multiplying each estimate by the standard deviation of the primary variable and
adding the mean of the primary variable. Care must be taken to have reliable mean
and standard deviation values. The direct variograms are denoted:

γZZ(h) = E
{
[Z(u)− Z(u+ h)]

2
}

γY Y (h) = E
{
[Y (u)− Y (u+ h)]

2
} (2)

The cross variogram and cross covariance are denoted:

γZY (h) = E {[Z(u)− Z(u+ h)] [Y (u)− Y (u+ h)]}
CZY (h) = E {Z(u)Y (u+ h)} − E {Z(u)}E {Y (u+ h)}

(3)

Under an assumption of first and second-order stationarity, the cross covariance and
cross variogram are related:

γZY (h) = CZY (0)− CZY (h) (4)

This relationship is very important for heterotopic data because the cross variogram
can only be calculated for homotopic data. In practice, the cross covariance is calcu-
lated and the cross variogram is then derived from the cross covariance (Donovan,
2015). The cross covariance for a distance of zero (CZY (0)) is estimated by extrapo-
lation. Then the cross variogram can be obtained from Equation 4. Cuba and Deutsch
give a detailed explanationof this (Cuba&Deutsch, 2012). Figure 1presents a schematic
illustration. For the cross variograms, the presence of both variables (Z and Y ) is re-
quired at both ends of the vector h, while for the cross covariance, one variable is re-
quired at one end and the other variable at the other end. Notice that different data
types could have different support, that is, drilling diameter and length of measure-
ment.

The linear model of coregionalization is used to model the three variograms at the
same time to ensure that the corresponding covariances are positive definitive (Pyrcz
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Figure 1: Left: Schematic cross-section with drill holes and some blast holes to show
when the cross variogram can be calculated. Right: Schematic representation of rela-
tionships between variables to describe the spatial variability, the system of equation
are shown later in the text.

& Deutsch, 2014). The LMC has the following form:

γZZ(h) =

nst∑
l=0

clZZΓl(h) = c0ZZ + c1ZZΓ1(h) + c2ZZΓ2(h) + . . .

γZY (h) =

nst∑
l=0

clZY Γl(h) = c0ZY + c1ZYΓ1(h) + c2ZYΓ2(h) + . . .

γY Y (h) =

nst∑
l=0

clY Y Γl(h) = c0YY + c1YYΓ1(h) + c2YYΓ2(h) + . . .

(5)

Where: nst is the number of structures; clZZ are the contributions for the l structures;
and, Γl(h) are the variograms of the l nested structures. The contribution coefficients
(clZZ) could be different for each model as long they meet the following conditions to
ensure a positive definite valid variogram model (Pyrcz & Deutsch, 2014):

clZZ > 0

clYY > 0

clZZ · clYY ≥ clZY · clZY

∀ l (6)

Now, the standardizedordinary cokriging estimator canbewritten as (Minnitt &Deutsch,
2014):

Z∗
SOCK (u0)−mZ

σZ
=

nZ∑
α=1

λα(u0)

[
Z (uα)−mZ

σZ

]
+

nY∑
β=1

λ′
β(u0)

Y
(
u′
β

)
−mY

σY

 (7)
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\end{equation} Where λα(u0) and λ′
β(u0)

are the cokriging weights for the primary vari-
able and the secondary variable, respectively at location u0; mz = E{Z(u)} and my =
E{Y (u)} are the stationary means of Z and Y respectively; nZ and nY are the number
of samples inside the ranges of influence of the variogram (or covariance) for the pri-
mary and secondary variable, respectively. There is only one condition in order to get
an estimator that is unbiased (Isaaks & Srivastava, 1989 ; Deutsch & Journel, 1997):

nZ∑
α=1

λα(u0) +

nY∑
β=1

λ′
β(u0)

= 1 (8)

Some historical implementations of ordinary cokriging considered the condition
that the sum of the weights to the secondary data should be zero. This is a severe
constraint that undermines the improvement brought by cokriging (Deutsch & Journel,
1997 ; Minnitt &Deutsch, 2014). A single constraint ensures that the secondary data are
weighted appropriately (Goovaerts, 1998). Minimizing the mean squared error (MSE)
generates the cokriging system of equations. Since there is only one constraint (see
Equation 8) there is one Lagrange parameter. The system of equations:

nZ∑
i=1

λi(u0)CZZ (uα − ui) +

nY∑
j=1

λ′
j(u0)

CZY

(
uα − u′

j

)
+ µ(u0) = CZZ (uα − u0)

where α = 1, . . . , nZ(u0)

nZ∑
i=1

λi(u0)CY Z

(
u′
β − ui

)
+

nY∑
j=1

λ′
j(u0)

CY Y

(
u′
β − u′

j

)
+ µ(u0) = CY Z

(
u′
β − u0

)
where β = 1, . . . , nY (u0)

nZ∑
α=1

λi(u0) +

nY∑
β=1

λ′
j(u0)

= 1

(9)

This can be expressed in matrix form as:



CZZ (u1 − u1) . . . CZZ (u1 − unZ
) CZY (u1 − u′

1) . . . CZY (u1 − u′
nY

) 1

...
. . .

...
...

. . .
...

CZZ (unZ
− u1) . . . CZZ (unZ

− unZ
) CZY (unZ

− u′
1) . . . CZY (unZ

− u′
nY

) 1

CY Z (u′
1 − u1) . . . CY Z (u′

1 − unZ
) CY Y (u′

1 − u′
1) . . . CY Y (u′

1 − u′
nY

) 1

...
. . .

...
...

. . .
...

CY Z (u′
nY

− u1) . . . CY Z (u′
nY

− un) CY Y (u′
nY

− u′
1) . . . CY Y (u′

nY
− u′

nY
) 1

1 . . . 1 1 . . . 1 0





λ1

...
λnZ

λ′
1

...
λ′
nY

µ



=



CZZ (u1 − u0)

...
CZZ (un − u0)

CY Z (u′
1 − u0)

...
CY Z (u′

n − u0)

1


(10)

Sinceweights are calculated for each location being estimated, a consistent notation
would be λ1(u0) instead of λ1 (as in Equation 9), nevertheless, for the matrix form, the
latter is being used because of space.

The cokriging estimator of Equation 7 will account for bias through the different
mean values and account for error and different support through the covariance values.
This estimator could be used directly in short- ormedium-termmodeling. In the case of
simulation, the use of simple cokriging would be recommended to be consistent with
the multivariate Gaussian distribution. This Lesson is aimed at estimation.
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Figure 2: Plan view of drill hole and blast hole data and its histograms in original units.

3 Implementation

The first step is to perform an exploratory data analysis to recognize the different char-
acteristics of the data. Care should be taken if the information comes from different
laboratories. The data are commonly processed separately within different domains.
Basic statistics and visualization of the data are minimum steps. The next step is to
standardize both data types by subtracting the mean and dividing by the standard de-
viation for each value. There will be different mean and standard deviation values for
each data type.

The principal directions of continuity (major, minor and tertiary) are identified and
defined. Experimental variograms of the drill holes and blast holes are calculated with
different distance and direction tolerances since the data are spaced differently. The
cross-covariance can be calculated with its own tolerance parameters, however, the
value at h = 0 (C(0)) will be inferred from the experimental model of the covariance.
The cross variogram is then inferred.

The three experimental variograms aremodeled at the same timewith the LMC. The
samemodels and structures are usedwith different contributions. The practitioner can
consider the direct variogram of drill holes as first priority, then the cross variogram
and finally the direct variogram of the blast holes. Once the variograms have been
modeled, the cokriging program can be used. It is useful to perform ordinary kriging
with the primary data only to ensure that the cokriging is performing well, the results
of cross-validation can be assessed.

4 Example

A set of copper values from exploration data (drill holes) and production data (blast
holes) are considered. The location of the data and summary statistics and histograms

GeostatisticsLessons.com ©2022 L. Davila and C. Deutsch 5

http://geostatisticslessons.com


Figure 3: Experimental cross covariance calculation to get the experimental cross vari-
ogram.

are presented in Figure 2. As a detail, the file to be usedwith theGSLIB program ‘cokb3d’
should contain both data types, one columnwith exploration data and another column
with production data, this implies that half of the data entries will be missing values.
Then, it is necessary to standardize both data types.

The next step is to find the major directions of continuity. In this example an omni-
directional variogram is used, although anisotropy can be recognized in blast hole data
(major direction: N 120, minor direction N 30); however, it cannot be clearly recognized
in the drill hole data. Figure 3 shows the calculation of the experimental variograms
and its models. The cross-covariance was calculated first and used to derive the cross-
variogram. The three experimental variograms are modeled at the same time, only
the contributions of each structure for every variogram model can be different (see
Equation 5). The model is checked to ensure it is positive definitive (see Equation 6). A
spherical model is used, the LMC is shown:

γZZ (h) = 0.25 Nugget+ 0.30 Spha=70 (h) + 0.45 Spha=450 (h)

γY Z (h) = 0.00 Nugget+ 0.27 Spha=70 (h) + 0.43 Spha=450 (h)

γY Y (h) = 0.20 Nugget+ 0.30 Spha=70 (h) + 0.50 Spha=450 (h)

Ordinary kriging and standardized ordinary cokriging are performed to obtain esti-
mates in original units. Cross validation results are shown. The fit for kriging is reason-
ably good; however, the fit for cokriging is better. Maps of both estimates are displayed
with subtle, yet important, local changes in the area of the blast holes that shows a bet-
ter definition of grades.
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Figure 4: Cross validation between estimates of ordinary kriging (left) and standardized
ordinary cokriging (right) compared with the true values of drill hole data.

Figure 5: Plan view of the results of estimation of ordinary kriging and standardized
ordinary cokriging estimates.

5 Discussion

Theoretically, cokriging with more information should always perform better than krig-
ing. This is shown in the example. The good results depend on reasonable variogram
fitting and a reasonable assessment of the blast hole data. The main application of the
methodology presented, inmining geostatistics applications, will be short- andmedium
termmodeling. There are similar applications in environmental geostatistics with data
of different quality. An important outstanding topic is simulation and the assessment
of uncertainty with multiple data types. This is an evident extension of the theory and
example presented here, but not developed in this lesson. Another related topic is the
possibility of using data imputation instead of cokriging, that is, impute the true val-
ues given collocated measured values with error. This imputation approach would be
suited to simulation.
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6 Summary

Standardized ordinary cokriging (SOCK) is a useful tool to apply in mining with higher
quality exploration data and short term production data. The cross variogram of het-
erotopic data cannot be directly obtained; however, the cross covariance can be used
as an estimator. The LMC must be positive definitive and all variograms are fitted si-
multaneously. The final cokriging outperforms ordinary kriging.
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