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Learning Objectives

• Understand the nature of categorical variables in a geostatistical context
• Review parametric and non‐parametric categorical variable distributions
• Assess the transition from categorical to continuous variables

1 Introduction

A continuous variable takes an outcome between some minimum and maximum. A categorical
or discrete variable will take an outcome from a list of possible values. Categorical variables are
often descriptive of some dominant geological characteristic; the outcomes could be thought of as
labels with no intrinsic numerical meaning. The number of possible outcomes could be indexed,
k = 1, . . . ,K , where there are typically less than seven, that is,K ≤ 7 (Deutsch, 2021). Examples
of categorical variables could be rock types, facies, alteration, or mineralization types (Deutsch &
Lan, 2008; Rossi & Deutsch, 2013).

The nature of categorical random variables is discussed. As scale increases, categories aremixed
and the correct representation becomes a continuous proportion. Inference of the probability dis‐
tributions and summary statistics for categorical variables are reviewed. This Lesson does not get
into the importance of categorical variables in Geostatistics or the details of categorical variable
modeling techniques; these subjects are important, but this Lesson provides an initial overview of
categorical variable distributions.

2 Categorical Variables

Categorical variables are divided into ordinal, nominal, and interval. Each of these can be either di‐
chotomous (binary), or polychotomous (multi‐category) (Silva, 2018). Ordinal variables have a nat‐
ural ordering in the categories (e.g., degree of rock alteration). Nominal variables have no intrinsic
ordering of the categories (e.g., lithology). Interval variables are ordered and the distance between
the categories is known (e.g., classes of porosity) (Silva, 2018). In practice, interval categories are
defined by a set of thresholds selected from a continuous variable. When possible, the categories
should be sorted to improve modeling results (Deutsch, 2021). Often categorical variables are a
nominal description or an indicator of a stationary domain.

3 Stationary Domains

A prerequisite when constructing numerical models is a conceptual geological model and a choice
of reasonable subsets of the (1) data, and (2) unsampled volume. These subsets are often called
stationary domains. These subsets may be defined hierarchically. Large scale limits may be defined
deterministically and small scale domains may be defined by categorical variable modeling within
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the defined limits. The final domains should define geometric zones that are reasonably statistically
homogeneous. The greatest variability should be between the domains and not within the domains.
Categorical variable modeling typically precedes continuous variable modeling. Then, the continu‐
ous variables are modeled within each category.

The domains may be based on one or more intrinsic geologic characteristics such as facies, alter‐
ation, or mineralization types; however, they may be based on an underlying continuous variable
with the purpose of isolating high and low values for improved prediction. The use of domains
based on an underlying continuous variable is reasonable if the results are spatially coherent and
predictable. In some cases, multiple categorical variables are modeled (e.g., mineralization types
and alteration types) and final domains are based on a combination of the different categorical vari‐
ables. Each situation is unique and depends on the relative importance of the different geological
controls, the data spacing, the scale of variability among other factors. An extensive discussion
of stationary domains can be found in a preceding Lesson (Dias & Deutsch, 2022) at Geostatistics‐
Lessons.com.

4 Categorical Variables Statistics

The K outcomes of a categorical variable Z are mutually exclusive and exhaustive (Derakhshan &
Deutsch, 2009a; Rossi & Deutsch, 2013). Every location uj , j = 1, . . . , n, belongs to one category,
and there is no intersection, overlap, or gap between them. Indicators are adopted to lend numeri‐
cal meaning to categorical variables and perform statistics. Analytically, i(u; k) denotes an indicator
variable corresponding to category k, considering a location u. If u belongs to k, the indicator is
1; otherwise, it is 0 (Rossi & Deutsch, 2013). The number of indicators equals K. Therefore, our
z(uj), j = 1, . . . , n, sampled data becomeK sets of n indicator data.

i(uj ; k) =

{
1, if location uj belongs to k
0, otherwise , j = 1, . . . , n, k = 1, . . . ,K

The term j denotes the number of locations, j = 1, . . . , n, and k the number of categories k =
1, . . . ,K .

The probability or proportion pk of k is calculated by themean indicator corresponding to k. The
probability distribution is defined by the probability of each category (Pyrcz & Deutsch, 2014). In
practice, sample bias is considered; consequently, the proportions, pk, k = 1, . . . ,K , are calculated
considering declustering weights (wj , j = 1, . . . , n) (Rossi & Deutsch, 2013):

pk =

∑n
j=1 wji (uj ; k)∑n

j=1 wj
, k = 1, . . . ,K

There are three commonmethods of declustering; cell, polygonal, and estimationweight declus‐
tering (Deutsch & Deutsch, 2015; Pyrcz & Deutsch, 2002).

The variance of the indicator variable of k can be calculated (Rossi & Deutsch, 2013):

Var {i (u; k)} =

∑n
j=1 wj [i (uj ; k)− pk]

2∑n
j=1 wj

= pk (1− pk) , k = 1, . . . ,K

Indicator variances are useful in variogram standardization, facilitating interpretation and compari‐
son among categories.

5 Non Parametric Categorical Variables Distributions

The sum of the pk proportions must be equal to 1, that is,
∑K

k=1 pk = 1, and none of them can be
negative, pk ≥ 0, k = 1, . . . ,K (Pyrcz & Deutsch, 2014). Perfect knowledge is when one pk = 1,
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Figure 1: Categorical PDF and CDFwhen there is no uncertainty (top row) andmaximumuncertainty‐
uniform distribution (bottom row).

and all other pk′ values are 0, k′ ̸= k. Complete uncertainty is pk = 1/K for all categories (a uni‐
form distribution) (Deutsch, 2021). Figure 1 illustrates the PDF and CDF of both cases. Generally,
global proportions inform us that some categories are more probable (Deutsch, 2021). The global
or prior proportions inferred from declustering are used for exploratory data analysis and local in‐
ference. A probability density function (PDF) of a categorical variable can be fully represented by a
table of probabilities, a pie chart, a histogram of probabilities, or a radar chart (Figure 2). The cumu‐
lative distribution function (CDF) is represented as well, taking the actual categories and arbitrarily
ordering them in a series of step functions. The CDF is useful in Monte Carlo simulation and data
transformation. An example of a typical categorical PDF and CDF is given in Figure 3, along with
their declustered representations (Pyrcz & Deutsch, 2014; Rossi & Deutsch, 2013).

Univariate Probability Density Function
Once the random categorical variable Z(u) has been defined, a PDF is defined as well, and ex‐
pressed as:

f (u; k) = Prob {Z(u) ∈ k} , k = 1, . . . ,K
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Figure 2: Visualization of a categorical distribution as a table, pie chart, bar chart, and radar chart.

where, f(u; k) ≥ 0, and
∑

f(u; k) = 1. The notation f(k) is used instead of pk to maintain
consistency with the multivariate representation below.

The univariate PDF gives the set of probabilities {p1, . . . , pK} associated with each of the cate‐
gories that can be observed in an unsampled location u (Li, 2011). Consider the declustered PDF in
Figure 3; sandstone is the most probable.

Bivariate and Multivariate Probability Density Function
The univariate PDF is useful in characterizing the uncertainty at an unsampled location. Neverthe‐
less, the uncertainty regarding either two, or more locations together is of interest. The bivariate
and multivariate PDFs for a categorical variable Z(u1,u2) and Z(u1, . . . ,un), respectively, are de‐
fined as:

f (u1,u2; k1, k2) = Prob {Z (u1) ∈ k1, Z (u2) ∈ k2} , k1, k2 = 1, . . . ,K

and,

f (u1, . . . ,un; k1, . . . , kn) = Prob {Z (u1) ∈ k1, . . . , Z (un) ∈ kn} , k1, . . . , kn = 1, . . . ,K.
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Figure 3: Example of declustering on the naive PDF and CDF of a categorical variable.

These determine the probability of joint outcomes either for two locations (bivariate), or for a
group ofn locations (multivariate). Once themultivariate PDF is established, all of themarginal ones
can be obtained. The bivariate and multivariate PDFs entail the following conditions respectively:∑

f (u1,u2) = 1, and f (u1,u2) ≥ 0 (bivariate),
∑

f (u1, . . . ,un) = 1, and f (u1, . . . ,un) ≥ 0
(multivariate) (Li, 2011; Pyrcz & Deutsch, 2014).

6 Entropy

The summary statistics derived from a univariate categorical PDF are mainly the proportions. Com‐
puting the variance (pk (1− pk)) does not provide any additional information. Nevertheless, we
can quantify the uncertainty in the PDF, by the measure of entropy. For a categorical variable with
K categories pk, k = 1, . . . ,K , entropy can be calculated (Gray, 2011):

H = −
K∑

k=1

pk ln (pk)

When the variable is uniformly distributed, the entropy achieves its maximum value, corre‐
sponding to the least informative prediction (Li & Deutsch, 2009). In the opposite scenario, where
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there is sufficient information to identify the true category, pk = 1, the entropy is zero (Sadeghi,
2017). Consider a categorical random variable Z, where all possible categories (k, k = 1, . . . ,K)
are equally probable, pk = 1/K, the entropy then would be (Li & Deutsch, 2009):

Hmax = −
K∑

k=1

1

K
ln

(
1

K

)
= − ln

(
1

K

)
= lnK

Considering uniform probabilities, lnK is the upper bound for the entropy with the least infor‐
mative prediction (Li & Deutsch, 2009).

7 Transition from Categorical to Continuous Distributions

When larger volumes are considered, the categories are unavoidably mixed, forfeiting their mutual
exclusivity and exhaustiveness. When the volume is increased, the indicator variable corresponding
to k does not assume only 0 and 1; instead, a proportion of values between 0 and 1, is now con‐
sidered (Deutsch & Lan, 2008). First, a neighborhood vj of locations uj , j = 1, . . . , n, is defined,
representing a specific volume – referred to as a “block” in Geostatistics. Consider m blocks at vj
support. The proportion pk of k in one block can be calculated (Derakhshan & Deutsch, 2009b;
Deutsch & Lan, 2008; Lan, 2007):

pk,v =
1

v

∫
v

i (ujv , k) dv, k = 1, . . . ,K

Assume that in one block, there are 8 points. The pk of k in that block can take values from
the set of

{
0, 1

8 ,
2
8 ,

3
8 ,

4
8 ,

5
8 ,

6
8 ,

7
8 , 1

}
. The pk values derive from each block define the distribution

of the indicator variable corresponding to k at that specific scale vj . In a scale v, pk at each block
can take values from the set

{
0, 1

v ,
2
v , . . . , 1

}
. The larger the v, the larger the set. The univariate

distribution for each indicator variable gradually changes from a bimodal distribution of ones and
zeros, at the point scale, to unimodal at the global mean as the support increases (Derakhshan &
Deutsch, 2009b; Lan, 2007).

At scale V1 the bimodal distribution becomes continuous between zero and one. V1 is called
representative facies volume (RFV) (Derakhshan & Deutsch, 2009a). RFV stems from the notion
of the representative elementary volume (REV). Figure 4 illustrates the concept of the transition
from categorical to continuous distributions. An RFV plot has three regions (1) little or no mixing
(categorical), (2) higher levels of mixing (transition), and (3) complete mixing (continuous). V2 is the
scale where one block equals the size of the domain, therefore, the global proportions of the K
categories prevail (Derakhshan & Deutsch, 2009a).

The CDFs of the two extreme cases at V = 0 and at V = ∞ are illustrated in Figure 5. At the
point scale, pk takes either 0 or 1, at the largest scale pk is the global proportion of the category k
(Derakhshan & Deutsch, 2009b; Deutsch & Lan, 2008).

The mean of the scaled‐up proportion remains unaffected by increasing the support. Assum‐
ing a uniform division of the entire space of interest into m equally‐sized blocks, the mean of the
proportion pk,v can be determined (Lan, 2007):

E [pk,v] =
1

m

1

n

m∑
a=1

n∑
j=1

i (uj,a, k) , k = 1, . . . ,K

where uj , j = 1, . . . n, represents the number of points within each of them blocks.
On the other hand, the variance of the scaled‐up proportion is reduced as the scale increases

(Deutsch & Lan, 2008; Lan, 2007). The variance is scale‐dependent. This lies in the concept of
additivity of variance. Assuming that we consider three different scales: points (v), blocks (V ), and
the domain (A). Then, the variance of point scale values in the domain (D2(v, A)) is equal to the
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Figure 4: Representative Facies Volume, V1 < V2.

Figure 5: CDF of pk at point scale and at support equals the whole domain.
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Figure 6: Unit 1‐simplex of (1,0), (0,1) vertices and unit 2‐simplex of (1,0,0), (0,1,0) and (0,0,1) ver‐
tices.

variance of point scale values in the blocks (D2(v, V )) plus the variance of block scale values in the
domain (D2(V,A)) (Harding & Deutsch, 2019):

D2(v, A) = D2(v, V ) +D2(V,A)

The topic of the additivity of variance is extensively covered in a previous Lesson (Harding &
Deutsch, 2019) and can be found at GeostatisticsLessons.com.

Overall, beyond the RFV scale, any indicator simulation technique that assumesmutual exclusiv‐
ity does notworkwell, hence determining the RFV is crucial to adopt themost appropriatemodeling
strategy (Derakhshan & Deutsch, 2009a; Razavi, 2013). Many categorical variables are somewhat
subjective and logged by a geologist based on visual inspection. This logging is based on a chosen
scale from the start, for example, it could be logged at a centimeter or a meter scale. In most cases,
the scale of logging is related to the anticipated scale of geostatistical modeling.

Sum to Unity Constraint
The sum of the proportions (p1, p2, . . . , pK ≥ 0) of a categorical variable must equal 1 at any scale
considered for the distribution to be valid. This entails the following equation being satisfied at any
V (Derakhshan & Deutsch, 2009b; Lan, 2007):

p1 + p2 + . . .+ pK = 1

Given that the sum ofK proportions, p1, p2, . . . , pK , equals one, plotting each proportion inK‐
dimensional space, will lead to a point that falls on a hyperplane (or aK−1‐simplex). In the case of
two categories, p1 and p2, the pointmust fall on a unit 1‐simplex, which is a line segment connecting
the vertices (1,0) and (0,1), satisfying the unity constraint and validating the distribution. Regarding
three categories, p1, p2, and p3, in order for the distribution to be realistic, the point must lie on a
unit 2‐simplex, that is an equilateral triangle plane attaching the vertices (1,0,0), (0,1,0), and (0,0,1)
(Derakhshan&Deutsch, 2009b; Lan, 2007). These statements regarding both cases are represented
schematically in Figure 6.

The sum to unity constraint requires the proportions of the categories to sum to 1, ensuring
a physically meaningful and valid distribution at any scale. A simplex is a geometric shape repre‐
senting this constraint in n‐dimensional space. TheK−1 simplex can be mathematically expressed
(Derakhshan & Deutsch, 2009b):
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∆K−1 =

{
(p1, . . . , pK) ∈ RK |

K∑
k=1

pk = 1 and pk ≥ 0 for all k

}
The resulting proportionsmust satisfy the unity constraint by lying on the surface of the simplex,

making it an important consideration in categorical variables modeling.

8 Parametric Categorical Variable Distributions

Non‐parametric categorical variable distributions are those derived directly from the data. For cat‐
egorical variable distributions, we use non‐parametric and, usually, non‐stationary distributions.
Although, sometimes we consider parametric categorical variable distributions, such as Beta distri‐
butions, the Binomial distribution, and Benford’s Law (Deutsch, 2021). These have rare applications
in Geostatistics. Nevertheless, they are worth mentioning.

Beta Distributions
A category’smarginal probability distribution is changedwhen the volume is increased fromdiscrete
to continuous. The same is applied to the multivariate probability of the full set of categories as
well. The continuous character of both distributions at higher supports depends on the means and
variances of all categories. Therefore, fitting the data, based on the known means and variances is
possible. The Beta distribution can be used in producing simulated realizations of each category’s
marginal distribution at different supports. Dirichlet and Ordinary Beta distributions are useful for
modeling the multivariate probability distribution of the categories at varying support, with the
latter being considered more suitable (Deutsch & Lan, 2008; Lan, 2007).

Binomial Distribution
TheBinomial distribution is a parametric categorical variable distribution applied inmining (Kennedy
& Kennedy, 1990). It is useful in the presence of two mutually exclusive outcomes, calculating the
probability of k successes, pk, out of n independent trials, where p is the probability of success of
one trial (Agresti, 2012):

pk =

(
n
k

)
pk(1− p)n−k =

n!

k!(n− k)!
pk(1− p)n−k, k = 1, . . . ,K

As an example, non‐continuous haulage systems in mining involve shovels operating within the
mine site. The production rate of a fleet of shovels,Rf , comprising n identical shovels, each with a
production rate of r, can be calculated:

Rf = nr

Assuming the fleet’s production rate aligns with the required rate for plant feeding, the above
equation could be applied to determine the necessary shovel count. This calculation assumes ideal
coordination among operational shovels and constant availability of all. However, in practice, this
is rarely the case as the availability of shovels is limited. Given the known availability, p, of the
shovels within the fleet, one can calculate the required number of n shovels that must be included
in the fleet to ensure a desired quantity of k available shovels. Therefore, the magnitude of the
fleet can be computed by considering the probability of availability of given shovels, a value derived
through the application of the binomial distribution (Kennedy& Kennedy, 1990). In particular, when
assuming the independence of shovel availability within the fleet, the probability pk of precisely
k shovels being available at a given time can be calculated by considering the probability density
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Figure 7: Level of confidence in the number of shovels being available.

function associated with the binomial distribution, as mentioned earlier. The determination of the
probability that, at a given time, a minimum of k shovels are available can be derived as well:

pk =

n∑
k=0

n!

k!(n− k)!
pk(1− p)n−k, k = 1, . . . ,K

In the example shown in Figure 7, the binomial theorem was applied in a scenario wherein
n=4 shovels were considered, each exhibiting an availability of p=85%. Both probabilities regarding
exactlyk shovels operating, and at least k shovels operating, at a giventime,were calculated. Hence,
considering a probability level of 95%, along with the shovels’ availability (85%), a fleet consisting
of four shovels would be required to guarantee continuous operation with at least two shovels
functioning at all times. This achieves a confidence level of 98.8% (Figure 7), which exceeds the
95% threshold.

Benford’s Law
Benford’s law, also known as the first‐digit law, is a categorical variable parametric distribution re‐
garding the probability of a non‐zero leading (first) digit in natural numbers spanning many orders
of magnitude. In data sets composed of values of four or more digits, the number 1 tends to occur
more frequently as the first digit in a sequence of numbers compared to the number 9. The fre‐
quency of the first digits, from 1 to 9, closely adheres to a logarithmic relationship (Benford, 1938).
The probability (or frequency) of the leading digit can be determined (Benford, 1938):

p(d) = log10

(
1 +

1

d

)
, d = 1, . . . , 9

Random numbers uniformly distributed between 0 and 1, as expected, do not conform to Ben‐
ford’s Law. In Geostatistics, Benford’s law is applied to detect fraud or artifacts in the reported
values in the data. A GSLIB‐like program (Deutsch, 2016) can be used for assessing the frequency
distribution of leading digits and comparing them to Benford’s Law. In addition to examining the
distribution of leading digits based on the actual data, both parametric normal and lognormal distri‐
butions are established considering the mean and variance of the data values, excluding zeros and
missing values, and treating negative values as their absolute counterparts. A random sampling
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Figure 8: Copper on the left with no apparent problems; Molybdenum on the right with some con‐
cerns.

of one million values from each normal and lognormal distribution allows for the evaluation of ex‐
pected deviations. Benford’s law was applied to some copper and molybdenum data components.
The results are shown in Figure 8. Figure 8 exhibits the frequencies represented by bars for both
Benford’s Law and the actual data, while the frequencies generated from lognormal and normal dis‐
tributions are depicted as lines. Some concerns are evident with the molybdenum data, although
the lognormal results perfectly match Benford’s law the actual data differs from the expected distri‐
bution.

9 Summary

In Geostatistics, categorical variables are mainly used for the determination of stationary domains
for estimation and simulation of continuous variables. Categorical variable modeling serves as a
preliminary stage to continuous variable modeling exerting an influence on the accuracy and relia‐
bility of resource estimation. The primary objective of this Lesson is to review categorical variables,
encompassing their commonly utilized distributions and their behavior when larger scales are con‐
sidered. This Lesson serves as a preliminary step towards categorical variable modeling, laying the
groundwork for the development and application of both object‐based and cell‐based geostatistical
models.
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