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Learning Objectives

• Review Bayes Theorem with an application in geostatistics.
• Motivate Bayes Theorem for secondary data integration.
• Understand aworkflow for geostatisticalmodelingwith secondary data (source
code available).

1 Introduction

Uncertainty exists in rock properties at unsampled locations because of geological vari-
ability at all scales and relatively sparse sampling. Predicting local uncertainty is straight-
forward when a multivariate probability distribution of the unsampled value and all
data can be constructed. The required conditional distribution is extracted directly
from themultivariate distribution. In practice, a slightly different problem exists, that is,
the integration of different data sources in the probabilistic prediction. There are times
when Bayes Theorem naturally lends itself to assist in the integration of disparate data
types. This Lesson reviews Bayes Theorem and shows an application to spatial predic-
tion in presence of secondary data.

Although Bayes Theorem is extensively taught in Statistics, many geoscientists have
limited statistics coursework or the courses are taught too early in their degree pro-
gram for the context of Bayes Theorem to be made clear. The concept of updating an
initial or prior understanding to an updated or posterior probability sounds reasonable,
but the details warrant further attention. This Lesson aims to provide some clarity to
Bayes Theorem in spatial prediction. An application to a simple 2-D mapping problem
is shown, with code and data available as a Python notebook.

2 Bayes Theorem

Following is a classic presentation and interpretation of Bayes Theorem. Consider A
to be an event we are trying to predict. B is some evidence or data that informs on A.
The conditional probabilities of A|B and B|A are defined as:

P (A|B) =
P (A and B)

P (B)
and P (B|A) =

P (A and B)

P (A)

These relations are considered axiomatic and the direct arithmetic result of con-
sidering multivariate probabilities. They are combined into the familiar form of Bayes
Theorem:
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P (A|B) =
P (B|A)P (A)

P (B)

This could be rewritten into the following:

P (A|B) = P (A) · 1

P (B)
· P (B|A)

• P (A|B) is the updated probability of A given B also called the posterior.
• P (A) is the initial estimate of the probability of A also called the prior.
• The combination of P (B|A)/P (B) is the degree that B supports A.
• 1/P (B) is the rarity of B.
• P (B|A) is the relevance of B for predicting A also called the likelihood.

In many situations B is fixed and different A’s are being considered, then the poste-
rior probabilities are written as proportional to the product of the prior and likelihood:

P (A|B) ∝ P (A) · P (B|A)

There are many profound interpretations and calculations possible with this theo-
rem. The focus here is the prediction of a regionalized variable A at locations u within
a domain: {A(u),u ∈ Domain}. Perhaps the best way to understand Bayes Theorem
in the context of geostatistics is with an example application.

3 Example

Consider two rock types. A is rock type 1 and not-A is rock type 0. Thus, A(u) is an
indicator random variable at each location u in the domain of interest. Consider also a
continuous secondary variable Y (u) over the domain that provides some information
on the rock type. Although the Y variable is measured at all locations it is considered
in a probabilistic sense to inform on the A variable (probability of A) being predicted.

The goal is to predict P (A(u)|y(u)) that would be expressed as the following given
the introduction to Bayes Theorem presented above:

P (A(u)|y(u)) = P (A) · 1

fY (y(u))
· fY |A(y(u)) u ∈ Domain

This assumes a decision of stationarity for the initial P (A), knowledge of a deemed
stationary marginal distribution of fY (y), and the likelihood distribution fY |A(y). The
marginal distribution fY (y) is not strictly required since it does not depend on A or
not-A. The marginal stationary probabilities P (A) and P (notA) are calculated from the
available data. A non-parametric estimate of these probabilities could be determined
by the proportions ofA and not-A in the data, but clustered data should be considered.
Cell declustering (see the lesson on declustering) is considered and the declustered
prior probabilities are determined to be P (A) = 0.528 and the complement P (notA) =
0.472.

Exhaustive data easily permits determination of fY (y). Asmentioned, it is not needed
since the conditional probabilities for A and not-A could be written as proportional to
the prior and likelihood distribution without the marginal of Y . Although not needed,
the marginal distribution of Y is very well known because it is exhaustively measured
and could be used to check future calculations.

Estimation of fY |A(y) and fY |notA(y) from the data may not be particularly reliable
because of relatively few data. The histograms below show the distributions based on
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Figure 1: Heat map of a secondary data plus some direct observations of A (RT=0) and
not-A (RT=1).

subsetting the Y values at locations of A and not-A. These histograms have few data,
so are moderately sensitive to the choice of binning.

Although there are many secondary data the likelihood distributions must be in-
ferred from the secondary data at the 61 locations where we know the primary vari-
able of interest. Drilling or other direct observations of the primary variable is often
expensive and there are few data. Fitting a parametric shape to the likelihood distri-
butions is an attractive idea; however, most earth sciences data defy simple param-
eterization. Kernel density estimation (KDE) is a widely used non-parametric way to
estimate the distribution of a random variable with few data. Each data is replaced by
a kernel and an estimate of the distribution is the sum of the kernels. Consider a set of
n data (yi, i = 1, . . . , n) and a kernel K that is non-negative and integrates to one. The
estimated distribution is written as:

f̂Y (y) =
1

n

n∑
i=1

Kh(y − yi)

where h is a smoothing parameter. There are many references on choosing the
smoothing parameter, but Silverman’s rule of thumb is considered here (Silverman,
1986). A Gaussian kernel and optimal h parameter are given by:

Kh(x) =
1

h
√
2π

e
−x2

2h2 and h = σ̂
1.06

n1/5

where σ̂ is the experimental standard deviation of the data. Note that the same
declustering weights applied to the indicator A and not-A data would be applied to the
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Figure 2: Likelihood distributions of Y conditional to A and not-A.

Figure 3: Kernel density estimates of the likelihood distributions of Y conditional to A
and not-A.

Y data available at the data locations. Applying the kernel density estimator results in
the following.

Theweighted sumof these twomarginal distributions should addup to themarginal
of Y if the weighting is correct and the data are representative. In practice, they are
rarely completely consistent. These likelihooddistributions should be either restandard-
ized to match the marginal fY (y) or the posterior probabilities restandardized if the
“proportional to” interpretation is considered.

Calculating the posterior probabilities P (A(u)|y(u)) is straightforward with the prior

GeostatisticsLessons.com©2018 C. Deutsch and J. Deutsch 4

http://geostatisticslessons.com


Figure 4: Likelihood distributions of Y conditional toA and notA together with the data-
based marginal distribution of Y .

probabilities and the likelihood distributions. The probability of notA is one minus this
probability. The posterior probabilities appear to follow the general trend of the sec-
ondary data.

Following is a small geostatistical application of using Bayes theorem to update a
prior probability P (A) to consider additional evidence or data. The inversion of fY |A(y)
to the desired P (A|y) is illustrated, that is, the concept of updating a prior by a likeli-
hood.

4 Implementation Details

This simple example considers a binary rock type indicator and a single secondary vari-
able. In practice, there may be multiple rock types and multiple secondary data. There
is no fundamental difference in the approach. A larger number of rock types means
fewer observations of the secondary data per rock type. A larger number of secondary
data means a higher dimensional likelihood distribution must be inferred. KDE is both
more challenging and important for these higher dimensions.

The simple example above considers a categorical A variable being prediced. In
practice, the variable being predicted could be a continuous rock property. The appli-
cation of Bayes Theorem is the same, but the likelihood distribution is extracted from
a multivariate distribution considering the primary and secondary. In principle, once
the full multivariate distribution of all primary and secondary data is established the
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Figure 5: Posterior distribution of A given Y .

need for Bayes Theorem is diminished; the desired conditional distributions could be
extracted directly. Consideration of local conditioning data complicates matters.

5 Local Conditioning

The posterior probabilities calculated above are posterior in the context of the sec-
ondary data, but there are local conditioning data that should be considered. At loca-
tions where local measurements show a rock type of 1 (not-A) or 0 (A), the probabilities
must be 1 or 0 depending on the measured value. Note that the map of P (A(u)|y(u))
depends only on Y and not the local conditioning data. Simply resetting the posterior
probability values to 0 or 1 at the data locations is not enough. There is spatial corre-
lation evident in the rock type distribution. The probability of A will diminish from 1
gradually away from an A conditioning data; the probability of A will increase from 0
gradually away froma not-A conditioning data. Consideration of this spatial correlation
is within the classic paradigm of geostatistics.

The Bayesian framework developed for the consideration of Y is not easily extended
to consider Y and the local conditioning data at each location. The data configuration
and Y data values around each unsampled location is different; there are no repetitions
of data patterns available to calculate likelihood values for precisely the same configu-
ration. There are many ways to address the challenge of simultaneous consideration
of secondary data and spatially distributed data of the same type. Any geostatistics
book can be reviewed. A simple solution will be demonstrated here.

The approach proposed here consists of three steps (1) calculate the posterior prob-
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ability given the secondary data as described above, (2) calculate the probability of A
given the local configuration of data relative to the unsampled location, and (3) com-
bine the probabilities together with some function (ϕ) making a reasonable assumption
about the relationship between Y and the local data:

P (A(u)|y(u), n(u)) ≈ ϕ(P (A), P (A(u)|y(u)), P (A(u)|n(u))) u ∈ Domain

The notation n(u) refers to the neighborhood of direct measurements relevant to
location u consisting of some number of data, the data locations and the rock types
at those locations. The notation ϕ refers to a function to combine the two different
conditional probabilities; this comes later.

There are a number of options for the inference of P (A(u)|n(u)) for all locations u ∈
Domain. The most direct approach would be to find replicates of the n+1 events, that
is, the configuration of n(u) data plus the unsampled location. Then, the conditional
probability could be calculated directly by the proportion of timesAwas observed given
n(u). This is the Multiple Point Statistics (MPS) technique in geostatistics. MPS requires
a large database of patterns called a training image. If a reliable training image is not
available, then indicator kriging (IK) could be performed using a covariance model for
the indicator random function. This approach will be taken here.

Thedetails of infering covariance/variogram functions and indicator kriging are found
in many geostatistical references. A simplified implementation is provided here. Con-
sider the deemed stationary indicator regionalized variable A(u)|n(u)) for all locations
u ∈ Domain with mean value E{A(u)} = p = 0.528∀ locations u ∈ Domain. The covari-
ance between two locations is also considered stationary, that is, it only depends on the
separation vector u between the locations: C(u,u+ h) = C(h) = E{A(u) ·A(u+h)−p2}
∀ locations u ∈ Domain. For the sake of simplicity we assume that the covariance is
isotropic (depends only on distance and not direction) and can bemodeled by an expo-
nential function. Experimental pairs averaged within distance classes and the covari-
ance model are shown. The experimental covariance is strongly negative at the first
lag due to the unique data configuration, and is not used when fitting the covariance
model.

The probability of A at each unsampled location can be calculated from the data
with indicator kriging, that is, estimating the event A at each unsampled location us-
ing a linear estimator with a minimummean squared error criterion. A constraint that
the weights sum to one is considered to avoid dependence on the global mean. The
kriging or regression equations are solved in their dual form for efficiency. Define aT =
[a1, . . . , an, 0] as the vector of conditioning data (plus a zero), cT = [C(u,u1), . . . , C(u,un), 1]
as the vector of the covariance between each data and the unsampled locationu (plus a
one), andC(i, j) = C(ui,uj) for i, j =, . . . , n andC(n+1, i) =C(i, n+1) = 0 for i = 1, . . . , n
and C(n + 1, n + 1) = 1. The estimated probability of A at each unsampled location is
given by the global dual ordinary indicator kriging equations:

P (A(u)|n(u)) ≈ C−1ac u ∈ Domain

Note that only the last term c depends on the unsampled location, thus C−1a is
solved only once and is referred to as the dual kriging weights. Note also that the esti-
mate is not guaranteed to be within 0 and 1 as it must; these constraints are imposed
after estimation. The local probabilities are calculated and shown below:

Now, back to the function to combine the two conditional probabilities (ϕ). A com-
mon one in geostatistics is called permanence of ratios (Journel, 2002). There are vari-
ations on this model in the geostatistics literature and various probabilistic classifiers
in machine learning that are similar. The permanence of ratios combination function
for two data sources is given by:
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Figure 6: Covariance of A for distance classes with a fitted covariance model.

Figure 7: Probability of A given the surrounding data n(u) calculated by indicator krig-
ing.
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Figure 8: Combination of secondary data-based and local data-based conditional prob-
abilities for A.

ϕ(P (A), P (A|B), P (A|C)) =

1−P (A)
P (A)

1−P (A)
P (A) + 1−P (A|B)

P (A|B) · 1−P (A|C)
P (A|C)

where A is A(u), B is y(u), C is n(u) and this is applied for all locations u ∈ Domain:
The result considers the secondary data and direct measurements of $A%. Note

that there are more areas where the probabilities are closer to 0 and 1: areas iden-
tified by the secondary data and areas identified by the direct measurements. The
uncertainty at unsampled locations has been reduced. The only way to reduce the
uncertainty further is to consider additional data.

There are alternatives in geostatistics for data integration including cokriging, but
this presents a reasonably straightforward implementation for geostatistical mapping.
The uncertainty quantified above is for each location one at a time, which is suitable
for many purposes. The simultaneous uncertainty of multiple locations at a time is
required for some applications and this uncertainty would have to be sampled by sim-
ulation, for example, a sequential simulation procedure.

6 Summary

The notion of Bayesian inversion is important for geostatisticians. The posterior con-
ditional probability of our variable of interest given secondary data is proportional to
the prior global probability of the variable of interest and the likelihood probability of
the secondary data given the variable of interest. In the presence of relatively few di-
rect measurements it is relatively straightforward to infer the likelihood distributions,

GeostatisticsLessons.com©2018 C. Deutsch and J. Deutsch 9

http://geostatisticslessons.com


then apply Bayesian inversion. The notion of conditioning is important for statisticians.
The local configuration of data around each unsampled location is unique and defies
a straightforward application of Bayes Theorem. Indicator kriging is one approach to
estimate the conditional probability of an event at an unsampled location given sur-
rounding conditioning data. Combining two estimates of conditional probability can
be made with permanence of ratios. There are other ways to approach this problem,
but the variety of principles touched on in this Lesson are important and widely used
throughout geostatistics.
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