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Learning Objectives

• Understand the concept of Bayesian Updating and its application in spatial
prediction.

• Explain the steps in BayesianUpdating for incorporating secondary variable(s)
in the prediction of a sparsely-sampled primary variable.

• Review the derivation of the Bayesian Updating equations.

1 Introduction

In many geoscience disciplines, the main variable of interest is sparsely sampled. In
many cases, complimentary secondary information from geophysics is incorporated
into the modeling of the primary attribute of interest. As the secondary information
is remotely sensed, much larger volumes can be sampled. Provided that there is suffi-
cient linear correlation, these different types of data can be merged through Bayesian
Updating tomodel the primary attribute of interest. In mining, widely-spaced borehole
data in lateritic bauxite and nickel deposits may be supplemented by a ground pen-
etrating radar survey. Similarly, in petroleum, reservoir quality measurements from
widely-spaced wells can be supplemented by seismic data. In addition, multivariate
data imputation (or assignment) for missing values often requires combining distribu-
tions from spatial data and collocated multivariate data.

Multivariate geostatistical approaches such as cokriging (Doyen, 1988) and collo-
cated cokriging (Xu, Tran, Srivastava, & Journel, 1992) can be used to incorporate the
exhaustive (available at all grid nodes to be predicted) secondary variable into the spa-
tial prediction of the primary variable of interest. However, when there are multiple
secondary variables, fitting a linear model of coregionalization could be tedious and
restrictive. In Bayesian Updating, the only model requirement is the covariance of
the primary variable which is required in any case (Deutsch & Zanon, 2004; Neufeld
& Deutsch, 2004). This lesson aims at explaining with mathematical derivation how
multiple secondary variables could be merged to predict a primary variable of interest
through Bayesian Updating.

Consider that in the domain A, there are two types of data available: (1) primary,
and (2) secondary. The former (i.e. well or borehole data) is generally sampled sparsely,
and the latter (i.e. the data acquired by a geophysical survey) provides non-invasive
exhaustive information related to the primary attribute. The primary variable Y has
been sampled at n locations, {y(ui), i = 1, . . . , n}, and the secondary variables, X =
[X1, . . . , Xm] are available at N grid nodes within A, {xj(ui), j = 1, . . . ,m, i = 1, . . . , N}
wherem is the number of secondary variables andN is the number of grid nodes. Both
primary and secondary variables are normal score transformed, Y,X ∼ N(0, 1) and
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Figure 1: Spatial combination of different data sources through Bayesian Updating

assumedmultivariate Gaussian. The primary variable Y is assumed to be second-order
stationary within the domainA, E{Y (u)} = 0, V ar{Y (u)} = 1, ∀u ∈ A. The primary and
secondary variables aremerged through Bayesian Updating to predict the values of the
primary variable at the unsampled location within A (Figure 1). The variance map for
secondary data is constant in the domain, because the correlations are calculated using
the data at the collocated locations and we assume they are constant in the domain,
so the resulting variance is constant as well.

Consider a location u where the value of the primary variable is to be predicted.
In Bayesian Updating, the primary data {y(ui), i = 1, . . . , n} which are not present at
location u, and the secondary data {xj(ui), j = 1, . . . ,m, i = 1, . . . , N} which are
present in the entire domain, are used for the conditioning. The steps are reviewed,
then the mathematical derivation is given.

2 Steps of Bayesian Updating

Step 1

Calculate the mean ȳ1(u) and the variance σ2
1(u) for the unsampled location u condi-

tioning to primary data {y(ui), i = 1, . . . , n} through the normal equations. It is noted
that simple kriging is equivalent to normal equations in Gaussian units:
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ȳ1(u) =

n∑
i=1

λiy(ui)

σ2
1(u) = 1−

n∑
i=1

λiC(u − ui)

n∑
i=1

λiC(ui − uk) = C(u − uk), k = 1, . . . , n

C(ui − uk) are the data-to-data covariance values and C(u − uk) are the data-to-
unknown (or the location where the estimate is needed) covariance values calculated
from a variogram model fitted to the experimental variogram of the y-data.

Step 2

Calculate the mean ȳ2(u) and the variance σ2
2(u) for the unsampled location condition-

ing to the collocated secondary data {xj(ui), j = 1, . . . ,m, i = 1, . . . , N} through the
normal equations:

ȳ2(u) =

m∑
j=1

µjxj(u)

σ2
2(u) = 1−

m∑
j=1

µjρjY

m∑
j=1

µjρjk = ρkY , k = 1, . . . ,m

where {xj(u), j = 1, . . . ,m} are the secondary data at the unsampled location, ρkY
is the cross-correlation between the primary and secondary data, and ρjk is the cross-
correlation between the secondary data.

Step 3

The updated conditional mean ȳU and variance σ2
U merging primary and secondary

data through Bayesian Updating is given as follows (note that the unsampled location
u is dropped from the notation):

ȳU =
σ2
1 ȳ2 + σ2

2 ȳ1
σ2
1 − σ2

1σ
2
2 + σ2

2

σ2
U =

σ2
1σ

2
2

σ2
1 − σ2

1σ
2
2 + σ2

2

Switching the order of the primary and secondary data will not change the result of
Bayesian Updating.

3 Mathematical Derivation
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Recall
Recall Bayes Theorem:

P (A|B) =
P (A)P (B|A)

P (B)

In the context of geostatistics, B represents the available data and A represents
the value at an unsampled location, which is also the variable of the equation. P (B) is
constant; therefore, this equation is often simplified to

P (A|B) ∝ P (A)P (B|A)

where P (B|A) is referred to as the likelihood, P (A) as the prior, and P (A|B) as the pos-
terior. In the Bayesian Updating framework, we assume that the primary data source
informs on the prior P (A) and the secondary data source informs on the likelihood
P (B|A) (Besag, 1986; Doyen, Boer, & Pillet, 1996). Under this formalism, the condi-
tional distribution given the primary and secondary data is expressed as:

fY |(n),x(y) ∝ fY |(n)(y)fx|Y (x).

Before giving the expression of prior and likelihood, let’s examine the conditional
mean and variance in a standard Gaussian space N(0, 1). Consider a set of n (n =
n1 + n2) multivariate Gaussian random variables. The conditional distribution of the
first n1 random variables given n2 data values is multi-Gaussian with mean vector µ1|2
and covariance matrix ρ1|2 calculated by the well known normal equation (Johnson &
Wichern, 2002):

µ1|2 = ρ12ρ
−1
22 x2

ρ1|2 = ρ11 − ρ12ρ
−1
22 ρ21

where x2 is the n2 dimension random variable values and the n dimension cross-

correlation matrix has the form of ρ =

[
ρ11 ρ12

ρ21 ρ22

]
.

Derivation of Bayesian Updating Equation
First, consider the prior. Since the primary variable Y is Gaussian, all conditional distri-
butions have a Gaussian shape:

fY |(n)(y) ∝ exp

(
− (y − ȳ1)

2

2σ2
1

)
∝ exp

(
− y2

2σ2
1

+
yȳ1
σ2
1

− ȳ21
2σ2

1

)
∝ exp

(
− y2

2σ2
1

+
yȳ1
σ2
1

)
where ȳ1 and σ2

1 are conditional mean and variance calculated from the normal
equations given in Step 1:

ȳ1 = ρ0nρ
−1
nny

σ2
1 = 1− ρ0nρ

−1
nnρn0,
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where ρ0n is the spatial correlation between y and n available primary data, y is the
available primary data, and ρnn is the spatial correlation between the available primary
data in the domain, both of which are calculated from the analytical model fitted to the
experimental variogram of the primary data.

Now, consider the likelihood (based on the collocated secondary data). Since all
variables are multivariate Gaussian distributed, the conditional likelihood also has a
Gaussian shape,

fx|Y (x) ∝ exp

(
−1

2
[x− bx]

T ρ−1
x [x− bx]

)
,

where bx is the conditional mean of x given y and ρ−1
x is the conditional covariance

matrix with the dimension ofm×m. The likelihood is the probability distribution of the
secondary data x given y, while the prior is the probability distribution of y given the
sampled primary data (n).

From the normal equations,

bx = ρ0my

ρx = ρmm − ρ0mρT
0m

where

ρmm =

 ρ11 . . . ρ1m
...

. . .
...

ρm1 . . . ρmm

 ρ0m = [ρ10, . . . , ρm0]
T

The likelihood with the mean and the variance:

fx|Y (x) ∝ exp(−1

2
[x− ρ0my]

T
ρ−1
x [x− ρ0my])

∝ exp(−1

2
[xT − ρT

0my]ρ−1
x [x− ρ0my])

∝ exp(−1

2
[xTρ−1

x x− 2ρT
0mρ−1

x xy + ρT
0mρ−1

x ρ0my2)

Since x is fixed and y is the variable, after eliminating the proportionality constant,
this equation is simplified to

fx|Y (x) ∝ exp

(
−ρT

0mρ−1
x ρ0m

2
· y2 + ρT

0mρ−1
x xy

)
.

The next step is to simplify the likelihood equation into amore concise format which
shares a similar form with the prior results (Ren, 2007). The conditional mean (ȳ2) and
the variance (σ2

2) of y given x are to be used to represent the coefficients of the poly-
nomial terms in the likelihood results. First, let’s rewrite the equations for ȳ2 and σ2

2 ,
which also come from the normal equations given in Step 2:

ȳ2 =

m∑
i=1

λixi

σ2
2 = 1−

m∑
i=1

λiρjy

m∑
i=1

λiρi,k = ρk,0, k = 1, . . . ,m
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In a matrix form, λT = ρT
0mρ−1

mm, the mean and covariance are expressed as:

ȳ2 = ρT
0mρ−1

mmx

σ2
2 = 1− ρT

0mρ−1
mmρ0m

Then, the expression of ρ−1
x is developed. From the previous section:

ρx = ρmm − ρ0mρT
0m

= ρmm(1− ρ−1
mmρ0mρT

0m)

ρ−1
x = (1− ρ−1

mmρ0mρT
0m)−1ρ−1

mm

The coefficient of the linear term ρT
0mρ−1

x x are expressed as:

ρT
0mρ−1

x x = ρT
0m(1− ρ−1

mmρ0mρT
0m)−1ρ−1

mmx

= ρT
0m(1− ρ−1

mmρ0mρT
0m)−1ρT−1

0m ρT
0mρ−1

mmx

= ρT
0m(ρT

0m − ρT
0mρ−1

mmρ0mρT
0m)−1ȳ2

= ρT
0m(ρT

0m − (1− σ2
2)ρ

T
0m)−1ȳ2

= ρT
0m(σ2

2ρ
T
0m)−1ȳ2

=
ȳ2
σ2
2

The same method is applied to the quadratic term coefficient ρT
0mρ−1

x ρ0m:

ρT
0mρ−1

x ρ0m = ρT
0m(1− ρ−1

mmρ0mρT
0m)−1ρ−1

mmρ0m

= ρT
0m(1− ρ−1

mmρ0mρT
0m)−1ρT−1

0m ρT
0mρ−1

mmρ0m

= ρT
0m(ρT

0m − ρT
0mρ−1

mmρ0mρT
0m)−1(1− σ2

2)

= ρT
0m(ρT

0m − (1− σ2
2)ρ

T
0m)−1(1− σ2

2)

= ρT
0m(σ2

2ρ
T
0m)−1(1− σ2

2)

=
1− σ2

2

σ2
2

Now substituting the two coefficients back into the likelihood gives a simplified form
of the likelihood:

fx|Y (x) ∝ exp

(
−1− σ2

2

2σ2
2

y2 +
ȳ2
σ2
2

y

)
Substituting the prior and the likelihood back to the posterior equation gives the

form of the combined probability distribution of y given the primary and secondary
data:

fY |(n),x(y) ∝ exp

(
−1

2

[
1− σ2

2

σ2
2

+
1

σ2
1

]
y2 +

[
ȳ2
σ2
2

+
ȳ1
σ2
1

]
y

)
.

This has the formof exp(−Ax2+Bx)which canbe rearranged to a standardGaussian
distribution form with the updated conditional mean and variance:
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ȳU =
B

2A
=

ȳ2

σ2
2

+
ȳ1

σ2
1

1− σ2
2

σ2
2

+
1

σ2
1

=
σ2
1 ȳ2 + σ2

2 ȳ1
σ2
1 − σ2

1σ
2
2 + σ2

2

σ2
U =

1

2A
=

1

1− σ2
2

σ2
2

+
1

σ2
1

=
σ2
1σ

2
2

σ2
1 − σ2

1σ
2
2 + σ2

2

,

These are the equations for Bayesian Updating.
In the final posterior equation given above, the exp(−Ax2+Bx) form gives the value

of updated mean and variance. When estimating the probability distribution, there is
only one variable y, so consider a standard univariate Gaussian distribution:

g(m,σ) ∝ exp(−
1

2
[x−m]Tσ2−1

[x−m])

∝ exp

(
−
x2 − 2mx+m2

2σ2

)

∝ exp

(
−

1

2σ2
· x2 +

m

σ2
· x

)

In this equation, suppose
1

2σ2
= A and

m

σ2
= B. It is easy to prove that σ2 =

1

2A
and

m =
B

2A
, which are the updated mean and variance.

4 Summary

BayesianUpdating is a robustmethod that combines the information fromprimary and
multiple secondary variables in order to generate a posterior (or updated) conditional
probability distribution of the primary variable to be predicted fY |(n),x(y). At each grid
node, the posterior distribution is obtained as a product of the conditional distribution
of all secondary variables given the primary variable to be predicted fx|Y (x) and the
conditional distribution of the primary variable to be predicted given available primary
data fY |(n)(y). Considering the Bayesian inference, the former conditional distribution
accounts for the influence of the secondary information and the latter conditional dis-
tribution accounts for the influence of the primary variable. The major assumption in
Bayesian Updating is that the conditional distribution of all secondary variables given
the primary variable is obtained by considering only the collocated available secondary
variables with the primary variable to be predicted, which is in fact identical to Markov-
type screening hypothesis in collocated cokriging.

The simplicity of Bayesian Updating lies in the fact that the Bayesian Updating pro-
cess does not require the spatial cross-correlation between primary and secondary
data, which is a necessity in collocated cokriging. In the cokriging context, all available
data (primary and secondary) are combined in oneGaussian space, and to describe this
space, the correlation between dimensions are required. If this space can be described
parametrically, the conditional distribution (mean and variance) at the unsampled loca-
tion (one dimension in the space) can be viewed as other data dimensions’ projection
at that dimension. This is why normal equations are used when calculating conditional

GeostatisticsLessons.com©2020 H. Zhang and O. Erten and C.V. Deutsch 7

http://geostatisticslessons.com


distributions. However, it is difficult to parameterize this large Gaussian space, there-
fore, Bayesian Updating is adopted as a way to combine two Gaussian spaces (primary
and secondary data space) together, and the combination is based on Bayes Theorem.
The two separate Gaussian spaces are easy to describe. The primary data space is de-
fined by the variogram. The secondary data space is parameterized by the correlations
calculated from the data. The collocated assumption avoids the spatial correlation re-
quirement in the secondary space. Thus, the variance map for the secondary data is
constant in the domain.

The interpretation of prior or likelihood does not influence the final updated results,
which can be observed in the Bayesian Updating equations. Each data source provides
a conditional mean and variance of y. Despite the format and derivation difference in
Bayesian Updating and collocated cokriging under theMarkov-type screening hypothe-
sis, these twomethods produce identical results. In the presence ofmultiple secondary
variables, Bayesian Updating may be advantageous because there is no need for the
linear coregionalization model to be fitted for all available variables, which is a require-
ment of the conventional geostatistical algorithms. Whenmultiple secondary variables
are available, As with the other geostatistical prediction algorithms, Bayesian Updating
also produces the estimation variance indicating the uncertainty associated with the
estimate assigned to the particular location.
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