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Learning Objectives

• Understand the principle of merging secondary variables
• Review the calculation of super secondary variables with examples
• Appreciate the applications of secondary variable aggregation

1 Introduction

Secondary data, including seismic attributes, geological trends and previouslymodeled
properties contain information to constrain modeling of additional variables. They are
often available exhaustively and help with geostatistical prediction of primary variables
available from drilling.

Some legacy software considers (1) only one secondary variable in collocated krig-
ing, or (2) the difficult to model linear model of coregionalization. A practical solution
is to aggregate multiple secondary variables into a single super secondary variable, al-
lowing conventional cokriging, collocated cokriging and cosimulation to be used.

Almeida& Journel (1994) proposed joint simulation ofmultiple variablewith aMarkov-
type coregionalization model. Babak & Deutsch (2009b) put forward the method of
merging multiple secondary data and a variant of collocated cokriging using an intrin-
sic model avoiding variance inflation and other problems in the original formulation.
Boisvert, Rossi, Ehrig, & Deutsch (2013) applied super secondary variables in Olympic
Dam Mine Project to simplify response surface modeling and cosimulation.

Regarding the collocated correlation structure, ideally, the secondary data should
have low correlation to each other and high correlation to the primary data. This would
minimize redundancy and maximize predictive ability. There may be challenges with
variables that are non-stationary, that is, the correlation coefficients may need to be
changed locally. As another limitation, combining variables that have different spatial
structure into a single super secondary variable will incur a loss of information. Cokrig-
ing techniques using the super secondary variable would provide for only secondary
variable variogram. This lesson aims to provide some understanding about the use of
super secondary variable.

2 Methodology

Prior to merging secondary variables, it is convenient for all the variables to be stan-
dardized or normal score transformed. We will also assume there are no missing data
or a missing data management and imputation strategy has been implemented ahead
of time.
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Notation
Consider one location at a time, that is, we will not add the standard (u) notation for
location in this introduction. At each location, uppercase Xi, i = 1, . . . , nsec are nsec

secondary variables and Y is the primary variable to be predicted, lowercase xi, i =
1, . . . , nsec and y represent the particular number for corresponding outcomes. All vari-
ables are standardized with mean of 0 and variance of 1. Xss,non denotes the non-
standardized super secondary variable and Xss denotes the standardized super sec-
ondary variable, their outcomes are xss,non and xss separately. ρij , i, j = 1, . . . , nsec are
the correlation values between pairs of secondary variables. ρiY , i = 1, . . . , nsec are
the correlation between each secondary variable and primary variable under consid-
eration, ρY Xss is the correlation coefficient of the super secondary variable with the
primary variable. µi, i = 1, . . . , nsec are the weights for each secondary data.

Theory
The goal of the super secondary variable formalism is to build a function , xss,non =
f(x1, . . . , xnsec), to maximize correlation wth the primary variable, which can combine
all the information in the nsec secondary variables into a single super variable. For
convenience, we standardize the Xss,non to have a mean of 0 and variance of 1.

The super secondary variableXss,non at each location is a linear combination of the
available secondary variables Xi, i = 1, . . . , nsec.

xss,non =

nsec∑
i=1

µixi

For getting maximum correlation between the super secondary variable and the
primary variable, we need to minimize a mean squared error:

max E{Xss,nonY } ≡ min E{[Xss,non − Y ]2}

The E{[Xss,non−Y ]2} is just the familiar cokriging error variance σ2
E (Pyrcz&Deutsch,

2014). The cokriging error variance is expressed as:

σ2
E =

nsec∑
i=1

nsec∑
j=1

µiµjρij − 2

nsec∑
i=1

µiρiY + 1 = 1−
nsec∑
i=1

µiρiY

The super secondary weights µj , j = 1, . . . , nsec can be calculated by the error vari-
ance in the same way with solving cokriging weights.

nsec∑
j=1

µjρij = ρiY , i = 1, . . . nsec

The standard deviation of the nonstandard super secondary variable σss,non is used
to standardize the super secondary variable Xss,non as below:

xss =
xss,non

σss,non

The variance of the non-standardized super secondary variable σ2
ss,non can be found

from the equation:

σ2
ss,non = 1− σ2

E =

nsec∑
i=1

µiρiY
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The correlation of the super secondary variable and the primary variable ρY Xss is
equal to the standard deviation of the super secondary variable σss,non.

ρY Xss = E{XssY } =

∑nsec

i=1 µiρiY
σss,non

= σss,non =

√√√√nsec∑
i=1

µiρiY

So the standardized super secondary variable Xss is calculated as:

xss =
xss,non

σss,non
=

∑nsec

i=1 µixi

ρY Xss

Brief summary
Consider Y (u) is the primary variable to be simulated at location u within a stationary
domainA. There are nsec secondary variables such as seismic attributes and previously
simulated primary variables at the same location denoted asXi(u), i = 1, . . . , nsec. The
super secondary variable Xss(u) is defined as follows:

xss(u) =

∑nsec

i=1 µixi(u)

ρY Xss

Where the µi values are the weights to the secondary data, ρY Xss is the correlation
coefficient between the merged secondary data and the primary data being estimated.
The weights µi are solved from the cokriging equations:

nsec∑
j=1

µjρij = ρiY , i = 1, . . . , nsec

Where ρij are the correlation coefficients between pairs of secondary variables, ρiY
are the correlation between each secondary variable and the primary variable under
consideration. The correlation coefficient of the super secondary variable and the pri-
mary variable is calculated as:

ρY Xss =

√√√√nsec∑
i=1

µiρiY

So we can apply the solved µi and ρY Xss to calculate the aggregated variable xss(u).
The aggregated super secondary variable contains all of the information contained

in the nsec secondary data relevant for the primary variable under consideration. The
correlation of the primary to the aggregated variable is always positive and greater than
the absolute value of any particular correlation of secondary variables to the primary.
The weights and aggregated values would change if a different primary variable is con-
sidered. It is also interesting to note that the weights are the same at all locations since
only collocated correlations are used. The weights and correlation of the aggregated
variable to the primary would change if a subset of secondary variables is available.

3 Example

The following example is based on a normal score transformed geological data set. It
has the primary variable of Net Pay Thickness (YNP ) and two secondary data set of
Top Structure (XTS ) and Thickness (XTH ). The secondary variables have a correlation
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coefficient of 0.359. Their correlations to the primary variable are 0.256 and 0.477,
respectively. The system of equations to be solved is:

µ1 + 0.359 · µ2 = 0.256

0.359 · µ1 + µ2 = 0.477

We can solve for the weights for each secondary variables: µ1=0.097 and µ2=0.442.
The correlation coefficient of merged secondary data with the primary variable is:

ρY Xss =

√√√√nsec∑
i=1

µiρiY =
√
0.097 · 0.256 + 0.442 · 0.477 = 0.485

Thus, the merged secondary variable is given by:

xss =
0.097 · xTS + 0.442 · xTH

0.485

The following figure illustrates how this could be applied in practice. The two ex-
haustive grids of secondary data are shown to the upper left. The primary drill data
are shown below them on the lower left. The correlation matrix and weights are illus-
trated in the middle. The weights are applied at each grid location and the aggregated
super secondary variable is shown at the upper right.

Readers using a web browser may use the interactive figure which has 9 different
cases that are divided into 3 groups, namely weak, medium and strong, based on the
correlation of secondary variables to primary variable. For each group, we fix the corre-
lation value of secondary variables to primary variable then gradually change the cor-
relation between the secondary variables. The weights to the two secondary variables
are displayed.

4 Application

There are many applications for super secondary variables. Constraining geostatisti-
cal models to all available data is important for the greatest prediction accuracy and
precision.

Secondary data integration provides us with information to improve primary vari-
able prediction. A combined super variable is treated as a new secondary variable for
consideration in subsequent geostatistical modeling, which is a powerful and attractive
method to simplify geostatistical simulation. There are various alternative methods for
secondary integration, including collocated cokriging, Bayesian updating and stepwise
conditional transform that work well for model construction, particularly when there is
only one secondary variable (Pyrcz & Deutsch, 2014).

Super secondary variables can also be used in a hierarchical approach. A useful
workflow (Babak & Deutsch, 2009a, 2009b) suitable for most modern software would
be to (1) aggregate all available secondary data together for the prediction of the first
primary, (2) simulate the first primary using the first super secondary considering in-
trinsic collocated cokriging (ICCK), (3) aggregate all available secondary data and the
first primary for prediction of the second primary, (4) simulate the second primary us-
ing the latest super secondary and ICCK, and (5) repeat steps 3 and 4 using all available
data.

Another application is to combine variables to reduce the number of variables go-
ing into response surface modeling or regression. An example of linear regression is
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Figure 1: The aggregation of secondary data to aid in primary variable prediction de-
pends on the correlation of each secondary to the primary and on the correlation be-
tween the secondary data.

shown in Boisvert et al. (2013). The model is built with four combined super secondary
variables instead of more than one hundred original variables. The merged variables
reduce the number of variables and lower the risk of over-fitting, which is helpful to
accurately determine regression coefficients.

5 Conclusion

Merging secondary data accounts for how related the secondary are to the primary
variable being predicted and also accounts for the redundancy between the secondary
data. This approach is theoretically sound; the detailed process of derivation can be
found in the paper (Babak & Deutsch, 2009a), it shows that using a single supersec-
ondary variable in collocated cokriging produces the same result as using multiple
secondary variable. The use of a single merged secondary variable greatly simplifies
geostatistical modeling. This relative simplicity of simulating with only one secondary
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variable instead of many makes this technique attractive.
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