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Learning Objectives

• Understand principal component analysis (PCA) within the context of multi-
variate geostatistical modeling.

• Review essential PCA theory relating to decorrelation and dimension reduc-
tion.

• Interpret PCA results with data of varying dimensions to consolidate under-
standing of the technique.

1 Introduction

Principal component analysis (PCA) (Hotelling, 1933; Pearson, 1901) is a dimension re-
duction and decorrelation technique that transforms a correlated multivariate distri-
bution into orthogonal linear combinations of the original variables. PCA is a useful
geostatistical modeling tool for two primary reasons:

1. Multivariate data, consisting of multiple correlated geological variables, are trans-
formed by PCA to be uncorrelated. Independent geostatistical modeling of the
decorrelated variables then proceeds, before the PCA back-transform restores
the original correlation to the modeled variables.

2. PCA may be used for dimension reduction in the above framework. Independent
geostatisticalmodeling proceeds on a subset of the decorrelated variables, before
the PCA back-transform provides models of all original variables.

PCA could be used to gain a deeper understanding of underlying latent factors, but
in geostatistics these two reasons prevail. It was first applied to geostatistical modeling
in this manner by (Davis & Greenes, 1983), with more recent examples from (Barnett &
Deutsch, 2012) and (Boisvert, Rossi, Ehrig, & Deutsch, 2013). This lesson begins with a
description of the data processing and covariance calculations that are necessary prior
to applying PCA. Essential PCA theory is then outlined and demonstrated with a small
example, before demonstrating it with a larger geochemical dataset.

2 Data Pre-processing and Covariance Calculation

Consider k geological variables Z1, . . . , Zk that will be simulated across a stationary do-
main A. Conditioning data is given as the matrix Z : zα,i, α = 1, . . . , n, i = 1, . . . , k,
where n is the number of samples. The Z data is assumed to be representative of the
domain A, so that parameters may be calculated experimentally. Variables must be
transformed to have a mean of zero (termed centered) before applying PCA or any lin-
ear rotation. It is also recommended that the variables be transformed to have variance
of one, as this improves the interpretability of subsequent PCA results. Standardization
of the geological variables is therefore used as a pre-processor to PCA:

Y : yα,i =
(zα,i − µi)

σi
, for α = 1, . . . , n, i =, 1, . . . , k
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where µi = 1/n
∑n

α=1 zα,i is the mean of Zi and σ2
i = 1/n

∑n
α=1 z

2
α,i − µ2

i is the vari-
ance of Zi. Each standardized Yi variable has a mean of zero and a variance of one.
PCA revolves around the covariance matrix Σ of theY data, which is calculated as:

Σ : Ci,j =
1

n

n∑
α=1

yα,i · yα,j , for i, j = 1, . . . , k

The Σ values parameterize the multivariate system of the Y data in terms of lin-
ear variability and dependence. Diagonal entries Ci,i are the variance of each Yi. Off-
diagonal entries Ci,j , i ̸= j are the covariance between Yi and Yj . These covariances
are also correlations since each Yi has a variance of one.

PCA results are subject to the accuracy of Σ. If the calculated sample Σ is not rep-
resentative of the true population covariances, then PCA will not make the population
uncorrelated in reality. For example, the covariance calculation is very sensitive to out-
lier values. Careful exploratory analysis should be performed to detect and remove
erroneous outliers from the data prior to the covariance calculation.

The familiar normal score transform may be considered in the place of standard-
ization, as normal scores have a mean of zero, variance of one and no univariate out-
liers. This will likely improve robustness of the covariance calculation and linear rota-
tion, although multivariate outliers may persist to have adverse consequences. The
normal score transform is non-linear, which has implications for estimation. Back-
transforming normal score estimates directly will introduce a bias, although transform-
ing a series of quantiles, as in PostMG (Lyster & Deutsch, 2004), solves this issue.

3 PCA Transform

The first step of PCA performs spectral decomposition of Σ, yielding the eigenvector
matrixV : vi,j , i, j = 1, . . . , k and the diagonal eigenvalue matrixD : di,i, i = 1, . . . , k:

Σ = VDVT

The PCA transform is then performed through the matrix multiplication of Y and
V:

P = YV

This rotates the multivariate data so that the resultant principal components in P
are uncorrelated. Multiplying P by the transpose of V rotates the data back to Y, pro-
viding the back-transform that may be used for simulated realizations of the principal
components:

Y = PVT

The eigenvector matrix may be thought of as a rotation matrix, providing a new
basis where the correlated data are made orthogonal. The linear matrix multiplication
of Y1, . . . , Yk with the ith column of V provides the Pi principle component. Hence,
each principal component is a linear combination of the original variables, explaining
the nature of the linear rotation terminology.

Each di,i entry correspondswith the variance ofPi, while alsomeasuring the variabil-
ity that Pi explains about the Y1, . . . , Yk multivariate system. More specifically, the per-
centage variability that Pi explains about the Y1, . . . , Yk is calculated as di,i/

∑k
j=1 dj,j ·

100, or di,i/tr(D) · 100. The component P1 explains the most variability, P2 explains the
second most, and so on.

PCA is demonstrated using a small k = 3 example. The scatter plot of the Y1, . . . , Y3

data is overlain with the P1, . . . , P3 principal component vectors, which correspondwith
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Figure 1: Scatter plot of the original data with the orientation (eigenvector) and magni-
tude (eigenvalue) of the principal components overlain.

each column of V and display the rotation basis (e.g., axes of principal components).
The vector lengths are scaled according to the associated eigenvalues, which are also
displayed in the bar chart below.

Following transformation, the below scatter plot displaysP data in the rotated basis,
where the greatest variance exists visibly in the P1 dimension. Scatter plots in this les-
son are colored according to their associated Y3 value, which indicates how each data
point is rotated and shifted by the various transformations. The nature of this PCA
rotation may be understood by comparing the Y and P scatter plots. The displayed
covariance matrices confirm that: 1) the data are made uncorrelated according to the
off-diagonal entries and 2) the principal components contain decreasing variance ac-
cording to eigenvalues in the diagonal entries.

4 Dimension Reduction

Since eigenvalues measure the variability that each principal component contributes
to the original multivariate system, practitioners may consider discarding insignificant
components from subsequent geostatistical modeling. This is not utilized often in prac-
tice, but is available when an infeasibly large number of variables must be modeled.
Consider that the l most important principal components are selected for simulation
across N model nodes, where l < k. Letting the resulting realization values be the Nxl
matrix P′, the PCA back-transform is simply modified by multiplying P′ with the l rows
of VT . The multiplication of these N x l and lXk matrices yields the N x k matrix Y of
the standardized variable realizations.
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Figure 2: Eigenvalues of each principal component.

Figure 3: Scatter plot of the PCA data.
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Figure 4: Covariance matrix of the original data (left) and PCA data (right).

The effectiveness of this dimension reduction scheme relates to the magnitude of
variance that the removed principal components explain. If the associated eigenvalues
are vanishingly small, then removal of those principal components should not have
a significant impact on simulation results. The figure below demonstrates the PCA
back-transform of l = 1 and l = 2 of the k = 3 components. Rather than a simulated
realization, the transformed P data is simply being back-transformed. The true stan-
dardized data values are compared with the back-transformed values, where perfect
reproduction of the original values would be achieved if back-transforming all k = 3
components, leading to all scatter falling on a 45 degree line and correlation of ρ = 1.
Scatter about the 45 degree line represents imperfect reproduction of the data, result-
ing from the loss of variability that would have been explained by the removed principal
component(s). In this case, each principal component explains a significant amount of
variability, so that the impact of their removal is substantial. Smaller eigenvalues can
be expected as k grows larger, making the use of dimension reduction more effective.

It is interesting to note that Y1 reproduction is virtually identical whether using l = 1
or l = 2 principal components, whereas the reproduction of Y2 and Y3 is significantly
improved. This relates to the nature of the rotation and how the original variables are
loaded onto the principal components. A loading ρ′(Yi, Pj) describes how important
the Pj principal component is for characterizing the Yi variability. It is calculated as:

ρ′(Yi, Pj) = vi,j · dj,j = ρ(Yi, Pj) · σi

This shows that a loading is the product of eigenvectors vi,j and eigenvalues di,i,
though it may be more intuitively thought of as the correlation ρ between the original
and transformed variables, scaled by the standard deviation of Yi. When working with
standardized data, as we are here, a loading is simply the correlation between the Yi

original variable and the Pj principal component, ρ′(Yi, Pj) = ρ(Yi, Pj). Inspecting the
loadings of this transformation, observe that P2 is virtually uncorrelatedwith Y1. That is
why the results above show that the inclusion and exclusion of P2 in the back-transform
yields virtually identical results for Y1. All of the original variables are loaded most
heavily on Y1, which is expected since it explains the majority of their variability.
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Figure 5: Scatter between the true and back-transformed values using two (above) and
one (below) principal components.

5 Geochemical Example

A geochemical dataset provides a more compelling example of PCA in terms of poten-
tial dimension reduction and exploratory analysis. This public data was collected by
the Northwest Territories Geological Survey in partnership with the Geological Survey
of Canada. It includes n = 1660 stream sediment samples that provide k = 53 elements,
which were collected in mineral deposit exploration across the Mackenzie Mountains.
After standardizing the elements, the covariance matrix of the resulting Y data is cal-
culated and displayed below.

Spectral decomposition is applied to the covariance matrix, generating the eigen-
values displayed below. The explained variability of the principal components is then
calculated from the eigenvalues, which is displayed in an incremental and cumulative
manner. The cumulative plot is sometimes referred to as a scree or elbow plot. It is
a useful tool, particularly if a visible elbow or inflection exists, where principal compo-
nents begin explaining insignificant variability. A slight elbow exists here after the third
or fourth component, though users may consider modeling additional components
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Figure 6: Loadings of the standardized variables on the principal components.

based on a required threshold of explained variability; say the 29 components that are
required here to explain 95% of the variability.

As expected based on the eigenvalues, most elements are only loaded strongly onto
the first few principal components (matrix below). Consider that the volume of informa-
tion in the covariance and loadingsmatricres above creates challenges for interpretting
the overall multivariate system. A common exploratory analysis approach for simplify-
ing themultivariate system and understanding the underlying latent variables, involves
plotting the loadings of select principal components against each other, such as the first
two principal components that are plotted below. Elements located in closely proxim-
ity are closely related, and vice versa. For example, consider that Ca and Mg have the
largest P1 values (furthest right on the plot), while having very small P2 values. Their
variability is largely explained by P1, but not P2. The two elements are located very near
to each other and relatively far from other elements, which corresponds with the co-
variance matrix, where Ca and MgO are highly correlated with each other, and strongly
negatively correlated with the most of the other elements. As only the first two prin-
cipal component loadings are displayed, note that this is a simplified projection of the
multivariate system, which only explains 49% of the variability.

6 Summary

PCA is a useful tool for multivariate geostatistical modeling. Geological variables are
decorrelated to facilitate independent modeling, before the back-transform restores
the original correlation to modeled variables. When the number of variables becomes
impractical to model, the dimension reduction functionality of PCA may be used for
modeling a subset of variables, before the back-transform provides models of all vari-
ables. It may also be applied for exploratory data analysis, providing insight into the
underlying latent variables that explain a high dimensional multivariate system.

There are alternative linear decorrelation transformations that are immediate ex-
tensions of PCA, which may offer advantages to geostatistical modeling. These include
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Figure 7: Covariance matrix of the standardized elements.

data sphereing and minimum/maximum autocorrelation factors, which are the focus
of a companion lesson.
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Figure 8: Eigenvalues and explained variability of each principal component.
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Figure 9: Loadings of the standardized elements on the principal components.
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Figure 10: Scatter of loadings with the first two principal components.
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