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Learning Objectives

• Understand the Permanence of Ratios method to integrate multiple data.
• Derive Permanence of Ratios equations starting with Bayes’ law.
• Build intuition on Permanence of Ratios through example.

1 Introduction

Numerical subsurfacemodels estimate resources and quantify uncertainty. Direct sam-
pling is usually sparse and geological variability occurs in several scales. Predicting
spatial uncertainty is straightforward when a probability model of the unsampled lo-
cations can be inferred. For univariate cases the procedure to estimate and quantify
uncertainty arewell established in the literature. However, it is common to have several
secondary variables sampled in the domain. These secondary variables may provide
information about the resource being modeled.

The context of this Lesson is prediction of a binary categorical variable, such as the
presence of a rock type or facies, with multiple secondary data sources. The secondary
variables could be spatially distributed data of the same variable, geophysical remote
sensing or other geological data. The variable being predicted will be denoted A. Con-
sider two secondary data sources denoted B and C. The prior information about A
in the stationary domain is calculated as P (A). The information content of B and C
about A are calculated as conditional probabilities P (A|B) and P (A|C). A detailed ex-
planation and examples of how to calculate these quantities can be found in (Deutsch
& Deutsch, 2018). Therefore, to predict the binary categorical variable utilizing all infor-
mation sources, it is necessary to infer P (A|B,C)

The probabilistic relation between A, B and C simultaneously is not well under-
stood due to incomplete sampling and redundant information. The likelihood of the
secondary variables given the primary may be infeasible to calculate. Therefore, a full
probabilisticmodel of the joint, marginal and conditional probabilities is unknown from
the data. This lesson explores the Permanence of Ratiosmodel, amethodology to com-
bine the information provided by each variable into a single probability value.

2 Background

Using Bayes’ theorem, the combined conditional probability can be written as:

P (A|B,C) =
P (A,B,C)

P (B,C)
=

P (A)P (B|A)P (C|A,B)

P (B,C)

B and C can be switched in the decomposition. Being able to calculate the con-
ditional probability at each location allows simulation to proceed and the joint spatial
uncertainty to be characterized. Even though Bayes’ theorem provides an analytical so-
lution to the problem, estimating the quantities P (C|A,B) and P (B,C) from the data is
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difficult (Journel, 2002). Some form of Co-kriging could be used, however, besides be-
ing computationally intensive, the approach relies on a generalized linear regression
model, which may be inadequate when combining categorical and secondary continu-
ous variables (Hong & Deutsch, 2009). Probability combination schemes may be used
to estimate the desired conditional probability. These methods, developed indepen-
dently in several different research areas, combine the primary prior probability with
conditional probabilities calculated from secondary variables into a single conditional
probability.

Two simple methods to calculate the combined conditional probabilities is to as-
sume full independence or conditional independence. This two assumptions can be
written as:

Full Independence, assuming P (B,C) = P (B)P (C) and using Bayes’ Inversion:

P (A|B,C) =
P (A|B)P (A|C)

P (A)

However, this hypotheses is not robust and may be inconsistent (Journel, 2002).
For example, if P (A) = 0.3, P (A|B) = 0.8 and P (A|C) = 0.6 would entail a combined
probability P (A|B,C) = 1.6 ( Journel, 2002). Since a probability cannot exceed the value
of one, this result shows that numerical instability may arise with this hypothesis.

Conditional Independence, assumingP (B|A,C) = P (B|A) andP (C|A,B) = P (C|A):

P (A|B,C) =
P (A)P (B|A)P (C|A)

P (B,C)

Using Bayes’ inversion:

P (B|A) =
P (B)P (A|B)

P (A)

P (C|A) =
P (C)P (A|C)

P (A)

P (A|B,C) =
P (B)P (A|B)P (C)P (A|C)

P (B,C)

This hypothesis, even though less restrictive and more robust than full indepen-
dence (Ortiz, 2002), does not eliminate the joint and marginal probabilities of B and C.
In earth sciences, these quantities may be hard to get from data. Often each variable
is sampled at different locations, directly or indirectly, and the dependency between B
and C can be complex. This non-trivial relationship may lead to numerical instability
and inconsistency when using a naive independence assumption (Journel, 2002; Krish-
nan, 2008).

The Permanence of Ratios formalism attempts to build a more robust scheme to
integrate data from information from multiple sources.

3 Theory of Permanence of Ratios

First, using Journel’s (2002) notation, the ratios are defined as:

a =
1− P (A)

P (A)
, b =

1− P (A|B)

P (A|B)
, c =

1− P (A|C)

P (A|C)

x =
1− P (A|B,C)

P (A|B,C)
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Permanence of Ratios assumes that the marginal gain in information of integrating
data event C to the knowledge of A is the same before or after knowing B ( Journel,
2002). Therefore, Permanence of Ratios model can be stated as:

x

b
=

c

a
or

x

c
=

b

a

x =
bc

a

Using the above assumption, it is possible to solve for the desired probability as:

P (A|B,C) =
1

1 + x
=

a

a+ bc
=

1−P (A)
P (A)

1−P (A)
PA + 1−P (A|B)

P (A|B)
1−P (A|C)
P (A|C)

The above equation eliminates the terms P (B,C), P (B) and P (C) and gives values
of P (A|B,C) that are inside the interval [0, 1] ( Journel, 2002). The model also provides
a clear and simple equation to calculate the combined conditional probability.

Interpretation
The ratios are the inverse of the odds of an event. They can be interpreted as probability
distance (Caers, Avseth, & Mukerji, 2001; Journel, 2002). For example, as P (A) gets
closer to one, a converges to zero: the probability distance shrinks to zero as A is sure
to happen.

Also, it can be shown that dividing two ratios of probability is the same as updating
the odds ratio of an event by the knowledge brought by a secondary variable. For
example, take c

a :

c

a
=

1− P (A|C)

P (A|C)

P (A)

1− P (A)
= OR(A)

1− P (A|C)

P (A|C)

Where OR(A) is the odds ratio of the event A. Therefore, the ratio is the incremen-
tal gain of information after updating the prior distance by the knowledge of the event
C. This update can increase or decrease the probability of A happening. As P (A) ap-
proaches zero, the distance goes to infinity.

The model can be extended to any number of secondary variables; the derivation
can be found in (Journel, 2002).

4 Derivation from Bayes’ Theorem

Hong and Deutsch (2007) showed that the conditional probability estimated using con-
ditional independence and Permanence of Ratios model is the same. Connecting the
theory proposed by Journel (2002) to a classic result in probability may improve under-
standing the assumptions and drawbacks of Permanence of Ratios.

Definitions
In order to make the derivation less cumbersome, the complement of an event will be
written as:

1− P (A) = P (Ac)

1− P (A|.) = P (Ac|.)
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Following Journel’s paper, the ratios can be written in the following form:

c

a
=

P (C|Ac)

P (C|A)
and

b

a
=

P (B|Ac)

P (B|A)

Derivation
Starting with Bayes Law:

P (A|B,C) =
P (A)P (B|A)P (C|A,B)

P (B,C)

Assuming conditional independence amounts to:

P (A|B,C) =
P (A)P (B|A)P (C|A)

P (B,C)

To get to the same result assuming the Permanence of Ratios hypothesis it is neces-
sary to assume that P (B,C) can be marginalized using Bayes’ law, then consider total
probability along with conditional independence:

P (B,C) =
∑

A∗=A,Ac

P (A∗)P (B|A∗)P (C|B,A∗)

P (B,C) =
∑

A∗=A,Ac

P (A∗)P (B|A∗)P (C|A∗)

P (B,C) = P (Ac)P (B|Ac)P (C|Ac) + P (A)P (B|A)P (C|A)

Therefore:

P (A|B,C) =
P (A)P (B|A)P (C|A)∑

A∗=A,Ac P (A∗)P (B|A∗)P (C|B,A∗)

Manipulating the above equation:

P (C|A) =
P (A|B,C)P (A)P (B|A)P (C|A)

P (A)P (B|A)
+

P (A|B,C)P (Ac)P (B|Ac)P (C|Ac)

P (A)P (B|A)

P (C|A)− P (A|B,C)P (C|A) = P (A|B,C)
P (Ac)

P (A)

P (B|Ac)

P (B|A)
P (C|Ac)

1− P (A|B,C)

P (A|B,C)
=

P (Ac)

P (A)

P (B|Ac)

P (B|A)

P (C|Ac)

P (C|A)

From the definitions, this is equal to:

x =
bc

a

Therefore, the Permanence of Ratios is equivalent to Bayes’ theorem where condi-
tional independence is assumed along with the hypothesis that the relation between
B and C can be retrieved from the law of total probability considering A and Ac.
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5 Practical aspects of Permanence of Ratios

Even though the theory provides a clear and simple equation to combine conditional
probability, it is worth noting a somewhat non-intuitive result. The combined probabil-
ity may not be inside the range of the components. The figure available in the online
edition of this Lesson shows a contour plot of P (A|B,C) related to P (A|B) and P (A|C)
on the two axes and P (A) fixed at different values.

Consider the case of P (A) = 0.5. Given conditional probabilities P (A|B) = 0.5 and
P (A|C) = 0.5 (the center of the plot), all data provides the same information and the
combinedprobability is also 0.5. However, ifP (A) = 0.7; P (A|B,C) is 0.3 givenP (A|B) =
0.5, P (A|C) = 0.5 (center of the plot). This result may seem counter-intuitive since the
prior probability ofA is greater than the non-informative scenario of 0.5. Asmentioned,
the ‘ratio of a ratio’ can be interpreted as an update of the odds ratio of the eventA. So,
in this case, the information provided by the events B and C agree that the probability
of A occurring is less then the prior suggests. Therefore the updated probability is less
than expected.

In a similar way, setting P (A) = 0.3; P (A|B,C) at the center of the figure would be
0.7. Similar considerations apply in this case. Starting with a non-informative prior and
updating it with agreeing probabilities provides a combined probability that is greater
than the marginal ones. This property is called non-convexity, i.e, the updated proba-
bility P (A|B,C) doesn’t necessarily lies between the priors P (A), P (A|B) and P (A|C).

However, if the prior probability of event A is non-informative, and the additional
piece of information provided by B and C disagree, e.g P (A|B) = 0.8 and P (A|C) = 0.2,
the updated conditional probability of A would still be 0.5 as expected.

Real world application
Caers, Avseth and Mukerji (2001) used Permanence of Ratios to integrate data and cre-
ate a fine-scale reservoir model for turbidite system constrained by prestacked seismic
and well-log data. The model was used to integrate the different sources of informa-
tion and use the calculated conditional probability in a multi point statistic simulation
of shale and sand facies.

Deutsch and Deutsch (2018) discuss Bayes’ theorem for geostatistical mapping. The
text provides an example of a map generated by the Permanence of Ratios model.
A more detailed description of a geostatistical work-flow that incorporates secondary
data can also be found.

6 Drawbacks of the Permanence of Ratios model

Permanence of Ratios provides a clear and simple analytical solution to the problem
of integrating information from different sources. However, some care must be taken
when utilizing it. First, the calculation using the model is only consistent when A is
binary. Otherwise the resultant probability may be greater than one. Hong (2010) pro-
vides a simple and straightforward numerical example of this feature.

A key step in the derivation above is the binary marginalization of the joint probabil-
ity P (B,C) using the events A and Ac. Bayes’ Law of Total Probability is only consistent
when the variables used to decompose the probability provide a proper partition of
the sample space, i.e they are disjoint and their union forms the sample space. Even
though the events A and Ac are disjoint, i.e their intersection equals zero, their sum is
only equal to the sample space when the variable is binary.

GeostatisticsLessons.com©2020 F. Pereira and C.V. Deutsch 5

http://geostatisticslessons.com


The model does not account, at least directly, for any known information on the
relationship ofB andC, e.g P (B|C). To address the bias that conditional independence
may generate, a weighted combination scheme might be used. This approach allows
for dependency between secondary variables by using weighted combinations of the
elementary probabilities (Hong & Deutsch, 2007; Journel, 2002; Krishnan, 2008).

7 Summary

Permanence of Ratios provides a clear analytical solution for the data integration prob-
lem. If the primary variable is binary, Permanence of Ratios seems more robust then
a simple conditional independence assumption. The simultaneous use of categorical
and continuous secondary variables at the same timemakes themodel useful in classifi-
cation problems. Permanence of ratios could be extended to any number of secondary
variables.
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