
Transforming Data to a Gaussian
Distribution

Michael J. Pyrcz1 and Clayton V. Deutsch2

1University of Texas at Austin
2University of Alberta

Learning Objectives

• Motivate the use of the Gaussian distribution
• Understand the mechanics of quantile-to-quantile transformation
• Review the requirement of a representative source distribution
• Understand transformation details including despiking and tail extrapolation
• Understand how the normal score transform is implemented alongside de-
spiking (source code available).

1 Why Do We Use the Gaussian Distribution?

Parametric models sometimes relate to an underlying theory, for example, the Gaus-
sian distribution is the limit distribution for the sum of many independent random
variables. Although some variables can be qualitatively described by similarities to
parametric distributions such as the Gaussian (normal) or lognormal distribution, in
practice, there is no general theory that would predict the form of probability distribu-
tions for earth science related variables.

Although the rock properties that we model are not Gaussian distributed, the mul-
tivariate Gaussian distribution is unique and permits the straightforward inference of
conditional distributions; there are no practical alternatives to compute conditional dis-
tributions and simulate continuous properties. Modern geostatistical algorithms and
software all invoke the multivariate Gaussian (MG) distribution for probabilistic predic-
tion of continuous properties. A requirement of the MG distribution is that the univari-
ate distribution must be Gaussian. The procedure developed early on in multivariate
statistics and adopted by geostatistics is to: (1) transform the data to a univariate Gaus-
sian distribution, (2) proceed with algorithms that take advantage of the properties of
the multivariate Gaussian distribution, then (3) back transform results to original units.

The simplicity of themultivariate Gaussian distribution arises from its compact para-
metric form: it is fully parameterized by a mean vector and a variance-covariance ma-
trix.
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where µ is a column vector of means, µY1 , µY2 , . . . , µYn , Σ is a symmetric variance-

covariance matrix between all pairs of n random variables or locations and |Σ| is the
determinant of Σ. Geostatisticians typically assume themean and variance are station-
ary and calculate the covariance values from the variogram. The decision of stationar-
ity is made for a geologic domain where the assumption of constant mean, variance,
and variogram is reasonable. Perhaps the most important property of the multivariate
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Gaussian distribution is that all conditional distributions are Gaussian in shape and pa-
rameterized by mean and variance values arising from the normal or simple cokriging
equations.

So, the transform of continuous property data to a Gaussian distribution is com-
monplace in geostatistics. Conditional distributions and multiple realizations are cal-
culated in Gaussian units and the results are back transformed. The mechanics of the
quantile-to-quantile normal scores transformare presented first, thenwe discusswork-
flow steps and implementation details.

2 Quantile-to-Quantile Normal Scores Transformation

The standard normal distribution is the target distribution:

fY (y) =
1√
2π

e−
1
2y

2

where fY (y) is the standard normal probability density function. There is no closed
form analytical solution to the cumulative standard normal distribution, represented
by FY (y), but there are excellent polynomial approximations (Kennedy, 1980).

The quantile-to-quantile normal score transformationmatches the p-quantile of the
data distribution to the p-quantile of the standard normal distribution. Consider the
data variable zwith the cumulative distribution functionFZ(z). Thiswill be transformed
to a y, normal score value with standard normal the cumulative distribution function
FY (y) as follows:

y = F−1
Y (FZ(z)) ∀ z

The nscore program in GSLIB implements this (Deutsch & Journel, 1998). A graphi-
cal representation of this procedure, shown below, is useful to understand the normal
score transformation. The histograms are shown at the top of the figure. The cumula-
tive distributions, shown at the bottom, are used for transformation. To transform any
core porosity (say 10.0): (1) read the cumulative frequency corresponding to the poros-
ity, and (2) go to the same cumulative frequency on the standard normal distribution
and read the normal score value (-0.45). Any porosity value can be transformed to a
normal scores value in this way.

Readers using a web browser may use the following interactive figure which shows
the transformation from an original distribution to the Gaussian distribution by quan-
tile.

The transformation to aGaussian distribution is straightforward; however, there are
a number of implementation details to consider including the need for a representative
distribution.

3 Representative Source Distribution

A representative distribution, FZ(z), is required for each variable within each chosen
stationary domain. These distributions may be of a residual after removal of a trend
model. Any errors in the source distribution, such as bias, missing ranges, and spikes
will be propagated through the modeling workflow. The representative source distri-
bution must be modeled.

Typically the representative source distribution is a non-parametric distribution rep-
resented as a list of data values with declustering weights. Cell declustering is reviewed
in a lesson. If distribution smoothing or fitting has been applied then the data values
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Figure 1: Procedure for transforming core porosity values, z, to normal score values, y.

are replacedby values representing the fitted distribution. Thenon-parametric distribu-
tion is constructed by sorting the values in ascending order such that, z1 < z2 < . . . < zn.
The weights assigned to each data are carried with the data in the sorting process. The
cumulative probabilities are calculated cpi =

∑i
1 wi and then averaged with the value

below (with cp0 = 0.0) to avoid a systematic bias due to the less than or equal to defini-
tion of the cumulative distribution function.

Modern workflows integrate uncertainty throughmultiple realizations of the source
distribution, F ℓ

Z(z), ∀ ℓ = 1, . . . , L. Each realization may be the result of a stochastic
process such as spatial bootstrap or expert inferred scenarios.

4 Distribution Despiking

Multiple values that are at the same numerical values are called spikes. These values
often occur at analytical detection limits, such as the minimum or maximum detection
values on an assay. The Gaussian distribution has no spikes and these values must
be ordered prior to transformation. This ordering procedure is called despiking. De-
spiking can be important for data with values at or below detection limit and are typi-
cally represented by a significant fraction of 0.0 values in the dataset. This is common
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with geochemical data in exploration and less common in Mining and Petroleum ap-
plications. Completely random despiking introduces artificial variability. Ordering the
values by a moving average of the data avoids this problem, but introduces artificial
continuity. A blended approach is increasingly used where the ties are broken partly
based on a moving average and partly with a random component.

Isolating the spike of zero values into a separate population is recommended if pos-
sible. If the values of the spike are mixed with the other values of the population, then
despikingmust be considered. Randomdespikingmay be acceptable if there are a very
small percentage of values at the spike. The idea of using local moving averages for
despiking was proposed by Verly (Verly, 1984). The idea is to compute averages within
local neighborhoods centered at each tied data value. The data are then ordered or de-
spiked according to the local averages; high local averages rank higher. As mentioned
above, this transformation may introduce too much continuity. A blended approach
where some randomness is added to the moving averages has shown promise.

5 Back Transformation

A back transformation is applied after a Gaussian-based algorithm has calculated all
conditional distributions and simulated realizations within the stationary domain. This
is the reverse of the forward transform:

z = F−1
Z (FY (y)) ∀ y

On the previous figure, one could imagine reversing the black arrows, that is, starting
at 2 and going back to 1.

The back transformation is sensitive to the tails of the distribution. The data mini-
mum and maximum are unlikely to represent the ultimate minimum and maximum of
the property for the entire stationary domain. The practitioner is suggested to choose
reasonableminimum andmaximum tail values and rely on a simple extrapolation func-
tion. In GSLIB, linear, hyperbolic and power tail extrapolation models are available
(Deutsch & Journel, 1998), but the linear one is simplest.

6 Special Topics

The transformation should take place prior to variogram analysis. The variogram of the
Gaussian transform is required to parameterize the required covariances. The Gaus-
sian transform removes outliers and smooths other irregularities in the distribution
that lead to noisy experimental variograms (Pyrcz & Deutsch, 2014).

Gaussian simulation methods may be applied on latent variable(s) as in the case
truncated Gaussian and pluriGaussian simulation. There are additional considerations
for modeling univariate and multivariate Gaussian distributions, formulation of the
truncation mask, data coding and transformation (Armstrong et al., 2011). Transform-
ing inherently categorical variables to continuous data values must be done consider-
ing spatial correlation and considering non uniqueness of the results.

There are times when fitting the quantile-to-quantile transformation results with
Hermite polynomials is convenient, for example, in change of support. The Hermite fit
is also used in disjunctive kriging (Ortiz, Oz, & Deutsch, 2003).
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