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Learning Objectives

« Understand the importance of discretization in geostatistical modeling of
blocks

+ Highlight factors that influence the recommended discretization level

« Demonstrate sensitivity to the number of discretization points

1 Introduction

Spatially correlated random variables are assigned to grid blocks to assess resources,
reserves, and for engineering design. Grid blocks are discretized to account for the
small scale of data relative to the block size. Block discretization is practically impor-
tant in geostatistical workflows. In the mining and petroleum industries, kriging and
simulation techniques are used to estimate and simulate random variables that repre-
sent grid blocks. In block kriging, the data-to-block average covariances are calculated
by discretizing the block with a set of locations. Similarly, in geostatistical simulation,
the blocks are represented by a set of simulated points. Geostatistical simulation takes
place at the scale of the data; however, it is not practical to exhaustively simulate at the
scale of the data, as this would require an unreasonable computational cost and is not
required in any case. A reasonable number of discretization points will suffice.

This lesson demonstrates some factors that influence the choice of the discretiza-
tion level to reasonably estimate effective block properties.

2 Discretization

Discretization is the process to subdivide space into a series of points or the method
used for transforming a coarse grid (structured or unstructured) into a set of conform-
ing fine grids (Manchuk, 2010). Each discretization point or node represents a volume
that is an integral part of the grid block under consideration. In geostatistical simula-
tion, the act of grid refinement and point modeling is fundamental to capture the vari-
ations of rock properties within the target grid. The discretization of blocks is similar to
concepts in other numerical methods including computational fluid dynamics.

For illustration, consider a 2-D block of dimension I, discretized by n by n points,
where z;; is the block property value at each discretization point, i,j = 1,...,n, rep-
resenting the position in the block. Note that the discretization points are evenly dis-
tributed in the 1, 2 or 3-D volume or regular grid (Deutsch & Journel, 1997).

The average block property is the upscaled average property of the block given as:
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Figure 1: 2-D block with n by n discretization.

E(n) = % Z Z Zi,j
i=1 j=1

The number of discretization points required to reasonably calculate block proper-
ties must be specified. This depends on several factors including: (1) the block dimen-
sion, that is, 1, 2 or 3-D, (2) the spatial correlation, that is, the variogram, and (3) the
nature of upscaling, for example, linear averaging or flow based upscaling. Geological
properties describe the nature and predict the performance of a geological site, for
example, a reservoir. Properties including mineral grade, thickness, porosity and fluid
saturations are scalar (static) properties, while permeability is a vector/tensor (dynamic)
property.

In what follows, both numerical and analytical methods are applied to discretize a
grid block and upscale the property of interest. The discretization error is assessed and
used as a basis for recommending a reasonable discretization level for effective block
property estimation.

Discretization Error

To numerically assess discretization error, consider a 2-D block of dimension 100x100x1.
An unconditional standard Gaussian simulation is performed. The block is discretized
with 20 different levels of discretization: n = 1,...,20. An n by n discretization con-
tains n? points in the block. Since scalar properties average linearly, grid point values
are scaled up arithmetically to obtain the block property z(n). The discretization error
relative to the reference grid block, e(n), is calculated for each discretization:

e(n) =z(n) — zrep, n=1,...,20

Plots of the error for ten realizations are shown in the figure below. To summarize
the error in estimating the block property, multiple (L = 200) realizations of the model
are generated and the mean squared error (M SE) is calculated:
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MSE(n) = Zel(n)2,n =1,...,20

=1
As expected, the estimation error decreases with an increasing number of discretiza-
tion points.
An analytical approach could be used to assess the discretization error. The mean
squared error M SE is:

SIS

MSE(n) = E {[Z(n) — %(c0)]?}
= E{z2(n)} — 2E {Z(n) - 2(c0)} + E {7%(c0)}

Where z(o0) is the reference block average with an infinite or very large discretiza-
tion. Assuming the mean is zero, E {z*(n)} is the variance of the block property, calcu-
lated as:

n n n n

E{m)} = 25 3330 D By 2t

i=1 j=1k=1m=1

Wherei k =1,...,nare X positionindicesand j,m = 1,...,nare Y position indices.
The expected product of property values are covariances:

E{zij 2km} =Cov{zij- 2xm}

The error from the analytical approach is the same as the numerical simulation. The
analytical approach is applicable to variables that average linearly.

Block Dimension

The error is now assessed for a scalar property of 1-D and 3-D grid blocks. Plots of
the discretization error for the 1, 2 and 3-D cases are shown below. The result shows
that a high dimensional model yields less error for the same discretization level n. This
is expected since for the same n, a 3-D block requires n? points to model the block
property, while a 1-D block only requires n points; more discretization points implies
high resolution and reduced error. Note that the error does not depend simply on n or
the total number of points.

These results show that a reasonable discretization level would be 8 in 1-D, 5 by 5 in
2-D, and 4 by 4 by 4 in 3-D. These values are chosen by the low absolute error and the
low relative improvement for higher levels of discretization.

3 Spatial Correlation

The importance of the variogram as a factor in choosing the required discretization level
is studied by modeling the values in the 2-D block model with varying variogram range
a_hg from 5.0 to 20.0 times the block size of the model. The result below shows that
the M SE decreases with an increasing variogram range. The suggested 5x5 appears
reasonable for all variogram range values.
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Figure 3: M SE of the estimated block property with different model dimensions.

Zonal Anisotropy

Most geological formations show different spatial continuity in different directions. In
geometric anisotropy, the variograms in the directions of maximum and minimum con-
tinuity have similar shape and sill but different ranges of correlation. Zonal anisotropy
is a special case of geometric anisotropy where the range of correlation in one or two
directions exceeds the domain size, which leads to a directional variogram that appears
not to reach the sill or variance (Pyrcz & Deutsch, 2014). Sensitivity analysis with var-
iograms showing zonal anisotropy confirm the results shown above - the error is less
for a longer range and the discretization levels of 5 by 5in 2-D and a 4 by 4 by 4 in 3-D
remain reasonable.

4 Average Variogram Calculation

A drill hole or point scale data distribution of a property of interest has a larger vari-
ance than the block distribution of the same property. A global block or selective min-
ing unit (SMU) distribution can be inferred from a representative distribution of point
scale data (Rossi & Deutsch, 2014). The reduction in variance at a block of size V is
quantified by the average variogram 75(V, V). The block is discretized into n points and
the variogram ~(h; ;), i,j = 1,...,n values are averaged. A rule of thumb is that a 5
by 5 by 5 discretization within a 3-D SMU is sufficient to obtain a robust estimate of
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Figure 4: Effects of varying variogram ranges on the M SE of the estimated scalar prop-
erty of a 2-D block model.

D?(v, V) (Rossi & Deutsch, 2014). The results of this study are consistent with this and
show that 5 by 5in 2-D and 4 by 4 by 4 in 3-D are reasonable discretization levels to use.

5 Composite Size

Drill hole samples are often averaged into regular length composites. The chosen com-
posite length often depends on the anticipated selective mining unit SMU. In open pits
mining, the selectivity in the vertical dimension is generally fixed at the bench height,
while in the case of underground mines, selectivity is a function of the mining method
(Rossi & Deutsch, 2014). The discretization level chosen to estimate the property of
interest in the SMU will depend on the composite length, among other factors. For
example, consider a 20x20x20m SMU with 10m vertical drill hole composites. The dis-
cretization n in the vertical dimension is the ratio of the block vertical dimension to
the composite length, that is, n = 2. Hence, a 4 by 4 by 2 discretization level would be
reasonable for the SMU.
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6 Nature of Upscaling

Geostatistical methods generate reservoir descriptions at a high resolution. Upscaling
is applied to compute effective properties at a larger scale that capture the influence
of the smaller scales. The accuracy of such effective properties, as applied to flow sim-
ulation, is usually assessed by how well the fluid-flow predictions made at the coarser
grid mimic predictions made at the finer grids (Mansoori, 1994).

The effective permeability of a flow simulation grid block depends on the relative
spatial arrangement of the constituent geological modeling cells, flow boundary con-
ditions and anisotropy (Pyrcz & Deutsch, 2014). A flow-based upscaling technique pro-
vides reasonable estimates of effective properties. Appropriate boundary conditions
and the detailed distribution of internal heterogeneity are used with the pressure equa-
tion that governs single-phase flow to numerically estimate the block effective perme-
ability.

As in the case of a scalar property, a 2-D reservoir block of dimension 100x100x1 is
used to model permeability k. An unconditional Gaussian simulation is used to gener-
ate multiple (L = 200) realizations. Two different approaches are considered to study
the joint effect of both discretization and upscaling in block permeability estimation
(1) Direct resampling of the n? discretization points of all realizations, n = 1, ..., 20, and
then applying the flow-based upscaling method, and (2) Re-gridding of the n? discretiza-
tion points to the reference discretization level (100 by 100) and applying the flow-based
upscaling method to estimate the block effective permeability. The two approaches
generate very similar results.

The mean squared error MSE for each n discretization is estimated with the av-
erage of L = 200 realizations. The MSFE estimated by the direct resampling and re-
gridding methods are plotted in the figure below. Note that the coefficient of variation
(CV) of the lognormal k distribution and the variogram determine the stability of the
estimated effective block property value. A CV of 1.0 is used here.

The number of recommended discretization points for flow-based upscaling remains
the same as for a scalar property: 5 by 5 for 2-D and 4 by 4 by 4 for 3-D.

7 Summary

Grid block discretization has practical application in many areas of geostatistical esti-
mation and simulation. Geological models built with a reasonable discretization level
yield accurate resource estimates and are best utilized for flow studies. To model a
2-D block, a 5 by 5 discretization is recommended as it provides a stable value with low
error. For a 3-D block, a 4 by 4 by 4 discretization is recommended. Composite data
may require adjustment of the discretization number in the direction of drilling to the
block size divided by the composite length.
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Figure 5: Mean squared error (M SE) of estimated vector property with an average of
200 realizations of a 2-D block.
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Figure 6: M SE of estimated vector property with different model dimensions.
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