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Learning Objectives

* Review the concept of support and the volume variance relation

« Demonstrate the importance of considering a change of support model when
estimating recoverable resources

* Appreciate the additivity of variance and dispersion variance notation

« Understand the practical application of change of support models (source
code available).

1 Introduction

The data available for mineral resource estimation primarily comes from diamond drill
core or reverse circulation (RC) cuttings. These data represent a small volume rela-
tive to the volume relevant for mining. The high and low values average together and
the larger the support the less variable and more symmetric the distribution becomes
(Isaaks & Srivastava, 1989). The data support distribution of an attribute will have
greater variance than the block distribution of the same attribute (Rossi & Deutsch,
2013).

The change of support from composited drill hole data to a practical mining scale
is important for the estimation of recoverable resources. A change of support model
predicts how grade distributions change with volume support considering only data
and statistics of the composited drill hole data.

2 Volume Support

The grade within mineral deposits is variable at all scales. A small diameter core sam-
ple could be high grade or low grade. As the volume or support of the core sample
increases the observed variability will decrease and the distribution will become more
symmetric. Most grade variables are mass fractions and scale linearly; therefore the
mean does not change with support.

A selective mining unit (SMU) may be considered the smallest volume that a min-
ing operation can select between ore and waste (Parker, 1980). Often, the SMU size
is increased to account for imperfect information at the time of mining and other con-
siderations. The SMU geometry depends on the mining method, equipment size and
selectivity characteristics of the deposit. Open pit SMU sizes range from 5x5x5m for
a highly selective operation to 20x20x15m for large bulk-tonnage porphyry deposits.
The grade of an SMU can be thought of as an average of many smaller support sam-
ples such as drill hole composites.

A typical three meter long diamond drill core sample represents 5-25 kg of material
while an open pit SMU may represent 325-20,000 tonnes of material. This 5 to 7 order
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Figure 1: As support increases, the variance of the distribution decreases which influ-
ences the total proportion above or below a defined cutoff.

of magnitude increase in support from the data and the SMU is an important consider-
ation when estimating long term recoverable resources. The decrease in variance for
a specified SMU size should be quantified. A hypothetical grade distribution is shown
below. The black curve represents the distribution for the data support, the red curve
with lesser variability represents a small SMU support, and the green curve with even
less variance represents a larger SMU support. If the cutoff grade is above the mean
grade, as in z., the estimated tonnage exceeding this grade will decrease as the sup-
port increases. If the cutoff is below the mean, as in z.;, the estimated tonnage above
this cutoff increases as support increases. Anticipating the correct change of support
is important for estimating resources at an SMU support.

3 Additivity of Variance

An important aspect of the volume variance relation is that variances are additive. Con-
sider the following small example of eighteen small scale values v;,i = 1,...,18 that
define a domain A (the rectangular box):

0.572 0.564 0.409 0.866 0.059 0.296
0.770 0.974 0.520 0.829 0.320 0.699
0.060 0.018 0.472 0.641 0.040 0.218

The mean and variance of all points within the domain is 0.463 and 0.088, respec-
tively. If the data are grouped into three 3x2 blocks V;,i = 1, ..., 3 we get the configura-
tion below:

0.572 0.564 | 0.409 0.866 | 0.059 0.296
0.770 0.974 | 0.520 0.829 | 0.320 0.699
0.060 0.018 | 0.472 0.641 | 0.040 0.218
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myy | myz | Mvys
0.493 | 0.623 | 0.272

The variance of points within the blocks is:

6

Var(vi, 1) = ¢ Z;(z —my1)? = 0.122
1 6

Var(vi, V) = ¢ ;(z — my2)? = 0.030
1 6

Var(v;, V3) = 6 Z(zm — mV3)2 = 0.048

i=1
1
Var(v,V) = -(0.122 + 0.030 + 0.048) = 0.067
3

And the variance of blocks within the domain is:

3
> (myi —ma)? =0.021

i=1

Var(V,A) =

Wl

The sum of the variance of the components equals the total variance of the data:

Var(v,A) =Var(v,V)+ Var(V, A)
0.088 = 0.067 + 0.021

The variance of points in the domain is the average or expected variance of points
in the blocks plus the variance of blocks in the domain. This does not depend on any
statistical assumptions such as stationarity.

Dispersion Variance Notation

The variance of a distribution with respect to its support is characterized by the disper-
sion variance notation D?(v, V') where v represents a small support of the values, and
V represents a larger support of the mean. This is the variability of the data of smaller
support within the larger volume.

As shown above, the total variance in a domain A is equal to the sum of the average
variance of points within blocks of some volume V' and the variance of those blocks
within the domain A (Isaaks & Srivastava, 1989):

D?(v, A) = D*(v,V) + D*(V, A)
This relationship is known as Krige's Relation. As we are interested in the dispersion
variance of blocks V within some domain A, we re-arrange the above equation to:
D*(V,A) = D*(v, A) — D*(v, V)

The dispersion variance of the data within the domain is equal to the sample vari-
ance, D%(v, A) = o2, and the dispersion variance of point data within the block, D?(v, V),
can be calculated from the variogram model.
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Average Variogram Values: “Gammabar”

The average variogram value within a volume V is denoted 5(V, V') and calculated as
the average variogram value for all possible pairs where both ends of the vector are in
the volume:

_ ! SR T o o U
W(WV)—V'V/V/VV(Z/ y)dydy~n.n227(ul u;)

The integral is approximated as a discrete sum for convenience. Consideration must
be given to the number of discretization points to achieve a stable result. A 5x5x5 dis-
cretization is considered sufficient to provide a reliable estimate of the average vari-
ogram (Isaaks & Srivastava, 1989); however, further consideration must be given to
the number of discretization points in the direction of drilling. If the composite length
matches the SMU dimension discretization in the z direction should be set to one to
avoid artificially increasing the average variogram. If the composite length is half the
SMU dimension the discretization should be two.

SMU support also influences the average variogram value. As the block size in-
creases the average variogram value increases and the block support variance must
decrease.

The variance correction factor (VCF), or f, is commonly defined as the ratio of block
variance to sample variance:

_D2(V7A)_U2_7(V7V)_1 W(VJ/)
/= D2(v, A) o2 N o?

The VCF can provide an indication of the impact of the change of support. An f
close to one suggests the two variances are similar either due to a highly selective SMU
size or geologic continuity; little mixing of material will occur (Rossi & Deutsch, 2013).
A small f value indicates the opposite and there will be a significant change in variance
and resources above cutoff, at the selected SMU scale.

4 Change of Shape

The shape of the distribution will change as support increases. The central limit theo-
rem tells us that the distribution will converge to the Gaussian distribution as support
increases. An important factor contributing to the change in shape is the geologic conti-
nuity of the variable in question. Highly continuous deposits will experience a less dras-
tic mixing of highs and lows when the data is scaled up. Grade distributions of highly
structured or discontinuous deposits may experience significant changes of shape as
the data is scaled up.

The following dynamic figure illustrates how an up-scaled distribution of copper
changes as a function of the variogram. The block scale is 15x15x15m and light gray
curve is the original drill hole data. Note as the continuity of the variable decreases the
distributions become increasingly low variance and converge to the mean value.

5 Change of Support Models

The variance reduction from data to an SMU is known from the average variogram. A
change of shape modelis necessary to accurately predict recoverable resources. As the
datais scaled up the distribution will become progressively more Gaussian in shape. By
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correcting the data distribution to the SMU support distribution prior to estimation, the
practitioner has a target distribution for the estimated model (Rossi & Deutsch, 2013).
With all change of support models, the distribution of SMU grades maintains the same
mean while the variance is reduced by the variance correction factor from the average
variogram.

Historical Change of Support Models

The following change of support models are not recommended due to the strong as-
sumptions required (Rossi & Deutsch, 2013). Details of the methods are discussed in
the geostatistical literature (Chilés & Delfiner, 2009; Isaaks & Srivastava, 1989; Journel
& Huijbregts, 1978).

The affine correction reduces the variance of the distribution without changing its
shape. This assumption of the permanence of shape is limiting as artificial minimum
and maximum values are introduced and we know the distribution will become more
symmetric as the support increases. It would only be correct for a distribution which is
Gaussian at the smallest scale.

The indirect log normal correction assumes the point and block distributions are
both log-normal with the same mean and different variances (Isaaks & Srivastava, 1989).
A quantile-quantile transformation from one distribution to the other is performed;
however, the mean is not preserved if the distributions are not exactly log-normal. A
second step of rescaling the values to the correct mean is required. Although better
than the affine correction, the shape change is unrealistic.

Discrete Gaussian Model

The discrete Gaussian model (DGM) is considered a more robust change of shape model
than those mentioned above as it makes more reasonable assumptions. The DGM
works on a Gaussian transform of the original variable. The relationship between orig-
inal grades, Z, and the normal scores, Y, is fit with a series of Hermite polynomials.
The variance reduction is performed by scaling the coefficients by a change of support
factor related to the variance reduction (Rossi & Deutsch, 2013). Details regarding the
fitting of Hermite polynomials are presented by Chiles & Delfiner (2009) and Machuca-
Mory, Babak, & Deutsch (2008).

The DGM requires an anamorphosis function to be fit. The function is defined
by Hermite polynomial expansion up to order n,, where the distribution of the trans-
formed data is (Machuca-Mory et al., 2008):

2w =3 6, H, (y(w)
p=0

Where ¢, is the p-order polynomial coefficient and H,(y(u)) is the p-order Hermite
polynomial; n,, is typically set to 100. The distribution of SMU scale grades can then be
determined by scaling the anamorphosis function by a support coefficient r:

np

2v(w) = ($pr) Hy(y(w))

p=0

Where r, is chosen such that the variance of the block values matches that pre-
dicted above and w is a measure of dissemination which is typically chosen as p for
disseminated deposits and 1 for highly structured deposits.
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6 Practical Applications of Change of Support Models

A change of support model is useful when evaluating recoverable resources. It can
provide a target for an estimated grade distribution, an indication of the degree of
averaging that may occur and potentially highlight the importance (or not) of mining
selectivity. The practical application of change of support models include the following.

Long Range Recoverable Resources

Due to the spatial variability of ore deposits, one cannot realistically recover all of the
estimated “in-situ” resource. Out of the in-situ resource, only a certain portion will be
selected as ore based on varying economic and technical considerations. Correctly
estimating the recoverable proportion of material above this cutoff grade is of unques-
tionable importance when evaluating the viability of a mining project.

A recoverable resource model is one that takes into consideration aspects of the
mining operation to quantify dilution that may affect the proportion of material above
a defined cutoff grade. In practice, geologic contact and operational dilution must also
be considered as well as internal dilution as a result of the SMU support.

Using an appropriate change of support model, the resource modeler can anticipate
the expected distribution of grades at the SMU scale. This histogram can then be used
to calibrate estimation parameters. All kriged estimates will be smooth, but one may
employ arestricted search in an effort to control the degree of smoothing for an interim
estimate. By restricting the total number of data used for the estimate, the modeler
can target the expected distribution from the change of support model, particularly
above a cutoff of interest.

One limitation of change of support models is that only internal dilution is consid-
ered. The distribution of estimated grades should not match the change of support
distribution exactly as additional, site specific, geologic and operational dilution should
also be considered.

Selectivity Analysis

Change of support models may also be used to assess the value of selectivity. This
assessment would be based on the impact that various sizes of mining equipment, and
thus various SMU sizes, would have on dilution for the given operation. This is typically
done by comparing SMUs of varying size as shown below:

The histogram of the drill hole data is scaled to the two block supports using the
illustrated variogram model and the discrete Gaussian change of support model. Note
the change in shape of the histogram as the supportincreases - the variance decreases,
the maximum value decreases, the minimum value increases and the distributions be-
come more symmetric. The data and variogram are the same for both grade tonnage
curves, only the support has changed. The 0.175% Cu cutoff grade is below the mean
in this example. 7.5m blocks yield 52% of the total tonnage above cutoff at a grade
of 0.310% Cu while 15m blocks yield 56% of total tonnage above cutoff at a grade of
0.289% Cu.

The value of the recoverable resource for a given selectivity is compared to the op-
erational cost of achieving such selectivity. This investigation may provide justification
for split benching (ie. 7.5m vs 15m benches) or the use of a hydraulic excavator near
ore-waste contacts. One drawback of using change of support models for selectivity
analysis is the assumption of free and perfect selection. Mining at contacts may be
more selective than the SMU size or conversely an isolated pod of ore within a substan-
tial volume of waste will likely not be recovered.
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Figure 2: Drill hole data and variograms (top left and right) with scaled histograms and
corresponding grade tonnage curves for 7.5m and 15m cubic blocks
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7 Summary

Understanding how a grade distribution will change as itis scaled up to a larger support
is a critical component of assessing recoverable resources. Krige's Relation and the ad-
ditivity of variances tells us how variance changes with support. A direct relationship
exists between the point support variance, the variance of points within the SMU vol-
ume and the variance of the SMU volume within the domain. The average variogram,
~5(V,V), is the expected variance of points inside a volume V and can be calculated from
the variogram model and the SMU geometry. The geologic continuity of the variable
has a significant impact on how the shape of the distribution will change. The DGM
provides a robust change of shape model. The volume variance relation can provide
the grade distribution representative of what will be mined. This provides a target for
estimation of recoverable reserves.
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