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Learning Objectives

• Identify the importance of a representative global distributions in estimation
and simulation workflows

• Understand the principle of cell declustering
• Select parameters (especially the cell size) in cell declustering which will lead
to a reasonable representative distribution

1 Introduction

Representative distributions and proportions are key input parameters to uncertainty
assessment and simulation. Declustering techniques assign eachdatumaweight based
on its closeness to surrounding data. All standard geostatistical texts include some dis-
cussion on declustering. The available data within a stationary domain zi, i = 1, . . . , n
are each assigned a weight wi, i = 1, . . . , n based on the spatial proximity of the data.
Data that are close get a reduced weight and data that are far apart get an increased
weight. The premise being that closer data are more redundant andmay preferentially
sample low- or high-valued areas. A global non-parametric distribution or corrected
categorical proportions are constructed using the weights and summary statistics also
consider the weights. A representative distribution is useful for global resource assess-
ment, checking estimated models and is required input to most simulation algorithms.

Polygonal declustering provides poor declustering weights except in relatively sim-
ple 2-D cases with very well understood lease or geological limits. Global estimation
for declustering requires many parameters and can suffer from issues such as nega-
tive weights and high weights assigned to screened data. Considering a trend model
for declustering can work; however, it only provides the corrected mean and many
trendmodeling algorithms require declustering weights as input. The technique of cell
declustering is robust and widely used. This lesson addresses the selection of parame-
ters for cell declustering.

2 Principle of Cell Declustering

Cell declustering was proposed by (Journel, 1983) and the first widely used public code
was made available by the author (Deutsch, 1989). A version of that code (declus) is
available in GSLIB (Deutsch & Journel, 1998). A grid of equal volume cells is placed over
the domain. The cell size is unrelated to any cell or block size used in 3-D modeling;
the cell size is approximately the spacing of the data in sparsely sampled regions. The
number of occupied cells are counted (nocc) and all occupied cells get the same weight.
If there is only one data in a cell it gets a weight of 1/nocc. If there are multiple data in
the cell, then they share the weight assigned to the cell. The following figure illustrates
this principle with eleven data and six occupied cells.
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Figure 1: Six occupied cells where the data in each cell receive weight so that the cell
weight is one sixth. Multiple data in a cell share the weight equally.

There are three obvious concerns and some more complex considerations in 3-D.
First, any data that happens to fall on a cell boundary is randomly assigned to one cell.
Second, the origin of the cell network changes the results and can lead to unstable
results. The early declus program considered a limited number of origin offsets on a
regular vector based on the cell size. The newer CellDeclus program considers a larger
number of randomly chosen origins (as illustrated belowwith three origins). Theweight
to each data is an average of the weight coming from each origin. The third concern
relates to the cell size.

A very small cell size leads to many unoccupied cells and a single data in each oc-
cupied cell; the data are equally weighted. A very large cell size leads to nearly equal
weighting because all data could fall into the same cell. Regardless of how large the
cell size, randomizing the origin will split the data into as many as four cells in 2-D and
eight cells in 3-D. The data are not equally weighted with large cell sizes. Considering
the range from small cell size to large cell size led to the popularization of a diagnos-
tic plot of declustered mean versus cell size. An example is shown below. Note that
(1) the first two cell sizes lead to the same result because no data are closer than one
distance unit, (2) the declustered mean for large cell sizes does not increase to the
equal weightedmean, and (3) this plot shows a clear minimum that corresponds to the
size of data clusters (this is the data provided with the GSLIB book (Deutsch & Journel,
1998)). There is no theoretical expectation that the minimum or maximum is correct,
but this plot is widely viewed to help with parameter selection. In practice, choosing
the parameters for cell declustering may be more complex.

3 Parameter Selection

The following reviews the parameter choices involved in cell declustering. It is common
to decluster data within each stationary domain separately. This can sometimes lead
to edge effects or overweighting when the domain pinches out, but it is difficult to con-
sider any other approach. It is also common to use the same declustering weights for
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Figure 2: The cell declustering grid for a fixed size moved to three different random
origins. At least 100 random origins are considered in practice.

Figure 3: The cell declustering mean versus 25 different cell sizes. Note the clear min-
ima at six distance units.
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multiple variables provided the variables are equally sampled, that is, all available at all
data locations. If the data are unequally sampled, then debiasing and data imputation
should be considered.

2-D versus 3-D
All geological formations are 3-D, but there are many cases when 2-D declustering is
appropriate. Sometimes the variables are averaged across the full thickness of the de-
posit and 2-D declustering is correct. Delineation drilling in a tabular or stratabound
deposit is often perpendicular to the plane of greatest continuity and the dilling fully
intersects the zone of interest. Declustering in 2-D, that is, the plane of continuity is ap-
propriate since there is no clustering in the third dimension. 2-D declustering is always
preferable since there is less risk of some unexpected weighting to occur. There are
situations with highly deviated drilling that require a 3-D declustering. The presence of
long horizontal wells with many data in a petroleum reservoir context are problematic;
one recommended approach is to leave the horizontal data out of declustering and
distribution inference. The data would be included as conditioning data in subsequent
facies and property modeling.

Coordinate System
The coordinates used in declustering should align with the principle directions of sam-
pling. The two cell declustering programs mentioned above consider that the input X,
Y and Z coordinates are the principle directions. A prior rotation may be applied. A
flattening or unfolding may also be applied in stratabound cases. The input data to cell
declustering consists of locations in a reasonable X, Y and Z coordinate system with
the most important variable specified for creating the diagnostic plot and checking the
results.

Anisotropy
No anisotropy specification is required in the case of a disseminated nearly isotropic
geological environment. No anisotropy specification is likely required in the case of
2-D declustering. The anisotropy of cell declustering should approximately follow the
anisotropy of sampling which, in turn, usually follows the anisotropy of the geological
formation. An anisotropy of 0.25% to 1% (0.0025 to 0.01) may be required in strati-
graphic deposits. Most cell declustering software allows a ratio to be specified for Y
to X (normally 1) and for Z to X (normally less than 1, say 0.01 for stratigraphic cases).
This ratio is applied to all cell sizes being considered. As different X cell sizes are con-
sidered, then the Y and Z cell sizes are set with the specified anisotropy ratio. The user
can always rerun cell declustering with different anisotropy ratios if there is doubt. This
will permit an understanding of sensitivity, but will not likely resolve any ambiguity. In
practice, the choice of the optimal X cell size is more important than the anisotropy
specification.

Range of Cell Sizes
A range of cell sizes is chosen to plot the diagnostic plot shown above and to assist in
the selection of an optimal cell size. The result for a zero cell size is the equal weighted
value. A too-small minimum cell size should not be chosen because the number of
cells would get too large. The old declus program allocated an array the size of the grid,
which was very inefficient. The newer CellDeclus program simply keeps the grid index
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associated to each data, but the number of cells still cannot be too big since the index
could overflow numerical precision. In practice, the minimum cell size could be set to
the closest practical spacing of the data

The “correct” cell size is the spacing of the data in the sparsely sampled areas. This
correct size is not exactly known and a range of cell sizes is considered to provide some
help selecting the right answer. So, the maximum cell size should not be set too large.
It is not like the variogram that could have a range larger than the spacing of the data.
The maximum should be less than one half of the domain size. The size is relative
to the X extent of the domain; the Y and Z extent will be determined by the specified
anisotropy.

The number of cells between the minimum and maximum should be enough to
see the character of the declustering plot. Normally between 25 and 100 different cell
sizes works well. If the minimum is reasonable (not too small), then the number of
cells could be chosen as a multiple of the minimum size, that is, (max - min)/min. For
example, given a domain 10000 units large in X with a chosen minimum of 100 units,
we could take the maximum to be 4000 units and (4000-100)/100=39 cells. This will
give us 39 evenly spaced cell sizes 100, 200, 300,…,4000. It is not essential to have this
even spacing.

Optimal Cell Size
Themost challenging decision is how to choose an optimal cell size in the principal X di-
rection (the anisotropy is already accounted for). Choosing the spacing in the sparsely
sampled areas is reasonable when there is an underlying regular grid of data spacing
followed by some areas more closely drilled; however, the drilling is often irregular.
Choosing the optimal cell size based on the diagnostic plot may also be difficult. The
plot shown above is straightforward with one clear minima that makes sense. The plot
below is unclear. There is a plateau between 1200 to 1600 distance units, then there is
another between 3000 and 4000 distance units. In this case, knowing the data configu-
ration, we would want to take a value of around 1200 distance units. It is common that
the first minima/plateau is the correct one. Additional support is sometimes required.

When there is no obvious reasonable size and no clear indication on the diagnostic
plot, a high resolution data spacing model is useful to help choose the cell size. There
are many different programs and algorithms to compute data spacing. This is not the
subject here. Computing the data spacing on a high resolution grid and plotting the
results as a cumulative distribution can be helpful. The following shows a CDF of data
spacing the lower tail is in areas of clustered samples. The steep region is where the
data spacing is nearly constant. The upper tail is where the data spacing is increasing
near the borders of the study area.

There is no “optimal” cell size in the sense of a clearly defined objective function, but
the cell size retained for the final distribution should (1) be a reasonable size relative
to the spacing of the sparsely sampled data, (2) show a near minimum or a plateau on
the cell declustering diagnostic plot, and (3) seem like a reasonable data spacing on the
distribution of data spacing.

4 Summary

Declustering remains an underappreciated step in geostatistical modeling. In practice,
a global representative distribution of every continuous and categorical variable is es-
sential for unbiased resources/reserves calculation and the accurate and precise rep-
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Figure 4: A challenging diagnostic plot showing multiple local minima.

Figure 5: A CDF of data spacing over a model area with a map of the data spacing to
the right.
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resentation of uncertainty. Cell declustering is a widely used technique and this lesson
reviews some details of parameter selection.

5 References

Deutsch, C. V. (1989). DECLUS: A Fortran 77 program for determining optimum spa-
tial declustering weights. Computers & Geosciences, 15(3), 325–332.

Deutsch, C. V., & Journel, A. G. (1998). GSLIB: Geostatistical software library and user’s
guide (2nd ed., p. 384). New York: Oxford University Press.

Journel, A. G. (1983). Non-parametric estimation of spatial distributions. Math Geol-
ogy, 15(3), 445–68.

Citation
Deutsch, C. V. (2015). Cell Declustering Parameter Selection. In J. L. Deutsch (Ed.), Geo-

statistics Lessons. Retrieved fromhttp://geostatisticslessons.com/lessons/celldeclustering

GeostatisticsLessons.com ©2015 C. Deutsch 7

http://geostatisticslessons.com

	Introduction
	Principle of Cell Declustering
	Parameter Selection
	Summary
	References

